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Abstract

It is known that the set of solutions of any constant-free three-variable word
equation can be represented using parametric words, and the number of numerical
parameters and the level of nesting in these parametric words is at most loga-
rithmic with respect to the length of the equation. We show that this result can
be significantly improved in the case of unbalanced equations, that is, equations
where at least one variable has a different number of occurrences on the left-
hand side and on the right-hand side. More specifically, it is sufficient to have
two numerical parameters and one level of nesting in this case. We also discuss
the possibility of proving a similar result for balanced equations in the future.
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1 Introduction

Word equations have been studied both from an algorithmic and algebraic point of
view. Some well-known results are that the complexity of the satisfiability problem
of word equations can be solved in nondeterministic linear space [1], and that every
system of word equations is equivalent to a finite subsystem [2, 3].

In this article, we concentrate on constant-free equations, and all equations are
assumed to be constant-free from now on. For some relations between constant-free
equations and equations with constants, see [4].
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Equations with one or two variables have only periodic solutions, and are therefore
not interesting. The three-variable case, on the other hand, is highly nontrivial, while
simultaneously being much simpler than the four-variable case. Some examples of
difficult results about three-variable equations are Hmelevskii’s theorem that every
three-variable equation has a parametric solution [5] (this does not hold for equations
with four or more variables), and a bound of 18 for the size of independent systems [6]
(no finite bound is known for equations with four or more variables).

Hmelevskii’s theorem, in particular, is relevant for this article. The original proof,
and even the simpler modern version of that proof in [7, 8], is very long. Also, while
the basic concept of parametric solutions is simple, the actual parametric formulas
that arise from the proof can be very complicated. They were analyzed in [8, 9], and
it was proved, for example, that the number of numerical parameters needed in these
formulas is at most logarithmic with respect to the length of the equation, and the
total length of the formulas is at most exponential.

In this article, we find out that for certain families of three-variable equations and
systems of equations, namely, for so-called unbalanced equations and entire systems,
the set of solutions can be described using explicitly given formulas that are quite
simple. In particular, only two numerical parameters are needed to represent all solu-
tions, and only one numerical parameter is needed if we disregard periodic solutions.
We also outline a strategy to possibly extend our result to all three-variable equations,
although one or two numerical parameters will probably no longer be sufficient in
that case. This can potentially lead to a much stronger and more explicit version of
Hmelevskii’s theorem in the future.

This article is an extended version of the conference paper [10]. The most important
differences are the following: We have added Section 3 about parametric words. In the
conference version, parametric words were mentioned but not defined formally. We
have added Theorem 5.2 and Corollary 5.3. These are essentially direct consequences
of results in [10], but the relevant parts were split and hidden inside many lemmas. We
have added Theorem 7.2. The idea behind this theorem was briefly discussed in [10],
but there was no formal statement or proof. Finally, we have added Theorem 8.2.

2 Preliminaries

First, we go through some basic definitions and lemmas abouts words. For more,
see [11, 12].

Let N denote the set of nonnegative integers. Throughout the article, let Σ be an
alphabet that contains at least two letters a and b. Let ε denote the empty word.

A word u is a factor (prefix, suffix ) of a word w if there exist words x, y such that
w = xuy (w = uy, w = xu, respectively). If one of the words u, v is a prefix (suffix) of
the other, we use the notation u ∼p v (u ∼s v, respectively).

If w ∈ Σ∗ and n ∈ N, then wn is called a power of w, or more specifically, an n-
power of w. If u is a prefix of w, then wnu is a called a fractional power of w. We also
use negative powers as follows: If w = uv, then u−1w = v and wv−1 = u. If x is not a
prefix (suffix) of w, then x−1w (wx−1, respectively) is not defined, so whenever we use
expressions like these, we have to make sure that they represent well-defined words.
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Words u and v are conjugates if there exist words x, y such that u = xy and v = yx.
If a word is an n-power, then all of its conjugates are also n-powers.

Let Ξ be another alphabet. A mapping h : Ξ∗ → Σ∗ is a morphism if h(uv) =
h(u)h(v) for all u, v ∈ Ξ∗. The morphism h is periodic if there exists w ∈ Σ∗ such that
h(u) ∈ w∗ for all u ∈ Ξ∗, and nonperiodic otherwise.

Next, we state some well-known results that are needed later. These can be con-
sidered folklore results, and Lemmas 2.1 and 2.3 can be found, for example, in [11,
Corollary 1.2.6, Proposition 1.3.4].
Lemma 2.1. Let x, y ∈ Σ∗. The following are equivalent:
1. x and y are powers of a common word.
2. xy = yx.
3. x and y satisfy a nontrivial relation, that is, there exist x1, . . . , xm, y1, . . . , yn ∈

{x, y} such that (x1, . . . , xm) ̸= (y1, . . . , yn) but x1 · · ·xm = y1 · · · yn.
Lemma 2.2. Let x, y ∈ Σ∗. If y is a fractional power of x and x is a suffix of y, then
x and y are powers of a common word.

Proof. Because y is a fractional power of x, we can write x = pq and y = (pq)np for
some words p, q and integer n ≥ 0. Because x is a suffix of y, x = qp. It follows that
pq = qp and, by Lemma 2.1, p, q ∈ r∗ for some word r. Then also x, y ∈ r∗.

Lemma 2.3. Let x, y, z ∈ Σ∗ and let xy = yz. Then x = z = ε or

x = uv, y = (uv)ju, z = vu

for some u, v ∈ Σ∗ and j ∈ N.
The next result is one of the equivalent formulations of the periodicity theorem of

Fine and Wilf.
Theorem 2.4 (Fine and Wilf [13]). Let x, y ∈ Σ∗. If a power of x and a power of
y have a common prefix of length |xy| − gcd(|x|, |y|), then x and y are powers of a
common word.

Let us fix an alphabet of variables Ξ and an alphabet of constants Σ. A word
equation is a pair E = (L,R), where L,R ∈ Ξ∗, and a solution of E is a morphism
h : Ξ∗ → Σ∗ such that h(L) = h(R). The equation E is nontrivial if L ̸= R.

A system of equations is a set of equations. A solution of a system is a morphism
that satisfies all equations in the system. A system is nontrivial if it contains at least
one nontrivial equation.

The set of all solutions of an equation or system E is denoted by Sol(E), and
the set of all equations satisfied by a morphism h is denoted by Eq(h). Then Eq(h)
is a system of equations, and it is called an entire system. Equations or systems
E1, E2 are equivalent if Sol(E1) = Sol(E2), and morphisms h1, h2 are equivalent if
Eq(h1) = Eq(h2).

We are particularly interested in the three-variable case Ξ = {X,Y, Z}. Throughout
the article, we let X,Y, Z be distinct variables, and we use the shorthand notation
[x, y, z], where x, y, z ∈ Σ∗, for the morphism h : {X,Y, Z}∗ → Σ∗ defined by h(X) =
x, h(Y ) = y, h(Z) = z.
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Example 2.5. Consider the equation E = (XY, Y Z). We can easily check that the
morphism h = [uv, (uv)ju, vu], where u, v ∈ Σ∗ and j ∈ N, is a solution of E:

h(XY ) = uv(uv)ju = (uv)juvu = h(Y Z).

It follows from Lemma 2.3 that all solutions of E are of this form or of the form [ε, u, ε].
An equation (L,R) is balanced if every variable has as many occurrences in L as

in R, and unbalanced otherwise. Results related to balanced equations can be found,
for example, in [14, 15]. We need the following two theorems.
Theorem 2.6 (Harju and Nowotka [14]). Let g, h : {X,Y, Z}∗ → Σ∗ be nonperi-
odic morphisms such that Eq(g) ̸= Eq(h). Then Eq(g) ∩ Eq(h) does not contain any
unbalanced equations.
Theorem 2.7 (Harju and Nowotka [14]). If two unbalanced equations have a common
nonperiodic solution, then they have the same set of periodic solutions.

3 Parametric Words

Parametric words can be formalized in a couple of different ways. In this section, we
define them as certain kinds of functions.

First, let us consider functions (Σ∗)p × Nq → Σ∗. Here (Σ∗)p means a cartesian
product rather than a concatenation of languages, so these are functions with p word
parameters and q numerical parameters. For i ∈ {1, . . . , p}, let Ui be the function
defined by

Ui(u1, . . . , up; j1, . . . , jq) = ui.

We can use E to mean the function that maps everything to the empty word. If α, β
are functions, then their product (or concatenation), denoted by αβ, is the function

(αβ)(u1, . . . , up; j1, . . . , jq) = α(u1, . . . , up; j1, . . . , jq)β(u1, . . . , up; j1, . . . , jq).

For all i ∈ {1, . . . , q}, we also define a formal power of α, denoted by αJi , as the
function

αJi(u1, . . . , up; j1, . . . , jq) = α(u1, . . . , up; j1, . . . , jq)
ji .

Parametric words can now be defined as the functions we get by starting with
the functions E , U1, . . . , Up and repeatedly applying the above-mentioned operations.
Formally, let

P0(p, q) = {Uk1
· · ·Ukn

| n ∈ N, ki ∈ {1, . . . , p}},
where the case n = 0 gives E . For d ≥ 1, let

Pd(p, q) = {α0β
Jk1
1 α1 · · ·β

Jkn
n αn | n ∈ N, ki ∈ {1, . . . , q}, αi, βi ∈ Pd−1(p, q)}.

The elements of
∞⋃
i=0

Pi(p, q).

are called parametric words with p word parameters and q numerical parameters. For a
parametric word α, the smallest d such that α ∈ Pd(p, q) is called the nesting level of
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α. Note that Pd−1(p, q) ⊆ Pd(p, q). This means that Pd(p, q) is the set of parametric
words with nesting level at most d.

We can naturally use shorthand notation such as αJ1α = αJ1+1, αJ1αJ1 = α2J1 ,
and αJ1αJ2 = αJ1+J2 . We are mostly interested in the case p = 2, and then we use
the notation U = U1 and V = U2. We can also let J = J1 and K = J2.
Example 3.1. The parametric word α = U(V JU)KUV J ∈ P2(2, 2) is the function
defined by α(u, v; j, k) = u(vju)kuvj .

Next we define parametric representations and solutions. To simplify notation, we
concentrate on the three-variable case, which is the only one needed in this article.
Generalizing the definitions for more variables would be straightforward.

A finite set

{(αi, βi, γi) | i ∈ {1, . . . , k}}

of triples of parametric words in Pd(p, q) is a parametric representation of the set of
morphisms

{[αi(x), βi(x), γi(x)] | i ∈ {1, . . . , k}, x ∈ (Σ∗)p × Nq}.

The set of all such parametric representations is denoted by Rd(p, q). For a three-
variable equation E, a parametric representation of Sol(E) is called a parametric
solution of E.
Example 3.2. By Lemma 2.5, the equation (XY, Y Z) has a parametric solution

{(UV, (UV )JU, V U), (E , U, E)} ∈ R1(2, 1).

Hmelevskii [5] proved that every three-variable equation has a parametric solution.
These parametric solutions use two word parameters, except that trivial equations
have the parametric solution {(U1, U2, U3)} ∈ R0(3, 0). The number of numerical
parameters and nesting level were not analyzed in [5], but a logarithmic upper bound
follows from the proofs in [8, 9], leading to the next theorem.
Theorem 3.3. For every nontrivial three-variable equation E, there exist q, d such
that E has a parametric solution in Rd(2, q). Moreover, q, d ∈ O(log |E|).

The process of solving a word equation is often divided into two parts: Finding
all periodic solutions (which is straightforward), and finding all nonperiodic solutions
(which is much more difficult). To make it easier to talk about these situations, we give
the following definition: A parametric representation for a set S ⊆ Sol(E) such that
every nonperiodic solution of E is in S is called a parametric NonPer-solution of E.
Lemma 3.4. If a three-variable equation E has a parametric NonPer-solution in
Rd(2, q), then it has a parametric solution in Rmax(d,1)(2,max(q, 3)). Moreover, if E
is unbalanced, then it has a parametric solution in Rmax(d,1)(2,max(q, 2)).

Proof. It is well-known that the set of periodic solutions has the parametric represen-
tation {(UJ1 , UJ2 , UJ3)} ∈ R1(1, 3) if the equation is balanced, and it has a parametric
representation in R1(1, 2) if the equation is unbalanced (see, for instance, Example
5.1.2 and the proof of Theorem 5.1.3 in [8] for an explanation). This parametric rep-
resentation together with the NonPer-solution gives a parametric solution of E. The
claim follows.
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4 Lemmas

Before moving to the classification of entire systems and unbalanced equations in
Section 5 and to the solution sets of these in Section 6, we prove some (mostly
technical) lemmas that are needed in those sections.
Lemma 4.1. Let x, y ∈ Σ∗ and m,n, p, q ∈ N and m,n, p + q ≥ 1. Let xp ∼p ymx
and xq ∼s xy

n. Then x and y are powers of a common word or

x = (uv)ju, y = xp−1uvxq = xpvuxq−1

for some u, v ∈ Σ∗ and j ∈ N.

Proof. Throughout the proof, we assume that p ≥ q and, consequently, p ≥ 1. The
case p < q is symmetric and can be handled in the same way by reversing all the words.

First, let |y| ≥ |xp+q−1|. Then y = xp−1wxq for some word w. From xp ∼p ymx it
follows that x ∼p wxq(xp−1wxq)m−1x. Clearly, wxq(xp−1wxq)m−1x has a prefix wkx
for some k ≥ 1 (if q+p−1 ≥ 1, then k = 1, otherwise k = m), and then x is a prefix of
wkx. Let j ≥ 0 be the largest integer such that wj is a prefix of x and let u be such that
x = wju. Then u is a prefix of wku and, by the maximality of j, u is shorter than w
and thus a prefix of w, so we can write w = uv for some word v, and then x = (uv)ju.

Next, let |y| < |xp+q−1| and q = 0. Then |xp| ≥ |xy| and |ymx| ≥ |xy|. From
xp ∼p ymx it follows that x is a fractional power of y, and then from the theorem of
Fine and Wilf it follows that x and y are powers of a common word.

Next, let |y| < |xp+q−1| and q ≥ 1 and |xp| < |y|. Then y has a prefix xp and a
suffix xq. Let y = zxq. We have |zx| < |xp|, so zx is a prefix of xp and therefore a
fractional power of x. By Lemma 2.2, x and zx are powers of a common word, and
then also y is a power of that same word.

Next, let |y| < |xp+q−1| and q ≥ 1 and |x| < |y| ≤ |xp|. Then y is a fractional
power of x and ends in x. By Lemma 2.2, x and y are powers of a common word.

Finally, let |y| < |xp+q−1| and q ≥ 1 and |y| ≤ |x|. Let k ≥ 0 be the largest integer
such that yk is a prefix of x and let z be such that x = ykz. From x being a prefix of
ymx it follows that z is a prefix of ymz, and by the maximality of k, z is shorter than
y and thus a prefix of y. This means that x is a fractional power of y. Also, x ends in
y. By Lemma 2.2, x and y are powers of a common word.

Lemma 4.2. Let x, y ∈ Σ∗ and m,n,∈ N and gcd(m,n) = 1. Let xmy = yzn. Then
x, y, z are powers of a common word or

x = (st)n, y = (st)is, z = (ts)m

for some s, t ∈ Σ∗ and i ∈ N.

Proof. By Lemma 2.3, xm = uv, y = (uv)ju, zn = vu for some u, v ∈ Σ∗ and j ∈ N.
Then uv is an m-power, and because its conjugate vu is an n-power, uv is also an n-
power, say, uv = rn. From xm = rn and Lemma 2.1 it follows that x and r are powers
of a common word p, and then uv = pl for some positive integer l, and l is divisible
by both m and n. By gcd(m,n) = 1, l is divisible by mn, and uv = wmn for some
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w ∈ p∗. We can write w = st, u = (st)ks, v = t(st)mn−k−1 for some s, t ∈ Σ∗ and
k ∈ N, k ≤ mn− 1. Then x = (st)n and z = (ts)m and y = (st)mnj+ks.

Lemma 4.3. Let x, y, z ∈ Σ∗ and i, k ∈ N and i ≥ 1 and k ≥ 2. Let (xz)ix = yk.
Then x, y, z are powers of a common word or

x = (uv)ju, y = (uv)j+1u, z = vu((uv)j+1u)k−2uv

for some u, v ∈ Σ∗ and j ≥ 0.

Proof. If i ≥ 2 or |x| ≥ |y|, then |(xz)ix| = |yk| ≥ |xzy|, so xz and y are powers of
a common word by the theorem of Fine and Wilf, and then x, y, z are powers of a
common word.

If i = 1 and |x| < |y|, then y = sx = xt and z = tyk−2s for some s, t ∈ Σ+. By
Lemma 2.3, s = uv, t = vu, x = (uv)ju for some u, v ∈ Σ∗ and j ∈ N, and then
y = (uv)j+1u and z = vu((uv)j+1u)k−2uv.

Lemma 4.4. Let h : {X,Y, Z}∗ → Σ∗ be a nonperiodic morphism. If E ∈ Eq(h) is
unbalanced, then E is equivalent to Eq(h).

Proof. Every solution of Eq(h) is a solution of E. Every periodic solution of E is
a solution of all balanced equations in Eq(h), because periodic morphisms satisfy
all balanced equations, and also a solution of all unbalanced equations in Eq(h) by
Theorem 2.7. If g is a nonperiodic solution of E, then E ∈ Eq(g) ∩ Eq(h), so it must
be Eq(g) = Eq(h) by Theorem 2.6. This means that g is a solution of Eq(h). We have
shown that E and Eq(h) have the same solutions.

5 Classification of Entire Systems

Budkina and Markov [16] classified all three-generator subsemigroups of a free semi-
group. In the next theorem, we give a reformulation of this theorem in terms of
morphisms and equations. An essentially equivalent result was proved independently
by Spehner [17, 18]. These results have been used to study three-variable word
equations in [14] and [19], for example. In [14], there is also a good comparison of
these results.
Theorem 5.1 (Budkina and Markov [16]). Every nonperiodic morphism
{X,Y, Z}∗ → Σ∗ that satisfies a nontrivial equation is equivalent, up to a permutation
of the variables, to a morphism of one of the following types:
BM1. [a, b, ak0

∏n
i=1 ba

ki ], where n, k0, . . . , kn ∈ N.
BM2. [a, bm, bn], where m,n ∈ N and m,n ≥ 1 and gcd(m,n) = 1.
BM3. [a, apbaq, ap

′
b
∏n

i=1(a
kib)aq

′
], where p, q, p′, q′, n, k1, . . . , kn ∈ N and pp′ = qq′ =

0 and 1 ≤ p+ q ≤ k1, . . . , kn.
BM4. [a, apb(akb)m, b(akb)naq], where p, q, k,m, n ∈ N and k,m, n ≥ 1 and p, q ≤ k

and gcd(m+ 1, n+ 1) = 1.
BM5. [a, apb(akb)maq, b(akb)n], where p, q, k,m, n ∈ N and p, q, k,m, n ≥ 1 and p, q ≤

k and gcd(m+ 1, n+ 1) = 1.
BM6. [a, apbaq, b

∏n
i=1(a

kib)(akb
∏n

i=1(a
kib))m], where p, q, k,m, n, k1, . . . , kn ∈ N

and m, p, q ≥ 1 and p, q ≤ k < p+ q ≤ k1, . . . , kn.
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With the help of Theorem 5.1, we can prove a similar classification result for entire
systems (Theorem 5.2) and for unbalanced equations (Corollary 5.3).
Theorem 5.2. For every nonperiodic morphism h : {X,Y, Z}∗ → Σ∗ that satisfies a
nontrivial equation, Eq(h) is equivalent, up to a permutation of the variables, to an
unbalanced equation of one of the following types:
BME1. (Xk0

∏n
i=1 Y Xki , Z), where n, k0, . . . , kn ∈ N.

BME2. (Y n, Zm), where m,n ∈ N and m,n ≥ 1 and gcd(m,n) = 1.
BME3. (XpZXq, Xp′

Y
∏n

i=1(X
ki−p−qY )Xq′), where p, q, p′, q′, n, k1, . . . , kn ∈ N and

pp′ = qq′ = 0 and 1 ≤ p+ q ≤ k1, . . . , kn.
BME4. ((Xk−pY )n+1Xk, Xk(ZXk−q)m+1), where p, q, k,m, n ∈ N and k,m, n ≥ 1

and p, q ≤ k and gcd(m+ 1, n+ 1) = 1.
BME5. ((Xk−pY Xk−qZ)n+1, (XkZ)m+n+2), where p, q, k,m, n ∈ N and

p, q, k,m, n ≥ 1 and p, q ≤ k and gcd(m+ 1, n+ 1) = 1.
BME6. ((XkZ)m+2, (Xk−pY

∏n
i=1(X

ki−p−qY )Xk−qZ)m+1), where
p, q, k,m, n, k1, . . . , kn ∈ N and m, p, q ≥ 1 and p, q ≤ k < p+ q ≤ k1, . . . , kn.

Proof. By Theorem 5.1, h is equivalent, up to a permutation of the variables, to one of
the morphisms BM1–BM6. It can be verified by a straightforward computation that
each of these morphisms satisfies the corresponding equation BME1–BME6, and these
equations are unbalanced. Thus there exists an unbalanced equation E ∈ Eq(h) that
is equal, up to a permutation of the variables, to one of the equations BME1–BME6.
By Lemma 4.4, Eq(h) is equivalent to E.

Corollary 5.3. Every unbalanced three-variable equation E with a nonperiodic solu-
tion h is equivalent, up to a permutation of the variables, to one of the equations
BME1–BME6.

Proof. By Lemma 4.4, E is equivalent to Eq(h), so the claim follows from Theorem 5.2.

6 Solutions of Entire Systems

In this section, we solve the equations BME1–BME6. By Theorem 5.2 and Corol-
lary 5.3, this essentially solves all entire systems and all unbalanced equations in the
three-variable case. For each equation, we find an explicit description of all nonperiodic
solutions of that equation using two word parameters, denoted by u and v, and pos-
sibly one numerical parameter, denoted by j. Each of the results could be formulated
in terms of parametric solutions, but we return to this in Section 7.
Lemma 6.1. Let E be the equation BME1. Then [x, y, z] is a solution of E if and
only if

x = u, y = v, z = uk0

n∏
i=1

vuki (1)

for some u, v ∈ Σ∗.

Proof. Let g = [x, y, z] be a solution of E. We can let x and y be arbitrary words u
and v, and then g is a solution if and only if z = uk0

∏n
i=1 vu

ki .
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Lemma 6.2. Let E be the equation BME2. Then [x, y, z] is a solution of E if and
only if

x = u, y = vm, z = vn (2)

for some u, v ∈ Σ∗.

Proof. Let g = [x, y, z] be a solution of E. Then yn = zm is both an n-power and
an m-power, so it is also an mn-power of some word v because gcd(m,n) = 1. This
means that y = vm and z = vn. Then x can be an arbitrary word u and this always
gives a solution g.

Lemma 6.3. Let E be the equation BME3. If [x, y, z] is a nonperiodic solution of E,
then

x = (uv)ju, y = xp−1uvxq, z = xp′−1uv

n∏
i=1

(xki−1uv)xq′ (3)

for some u, v ∈ Σ∗ and j ≥ 0. Moreover, every morphism defined by these formulas is
a solution of E, except that if p′ = q′ = 0 and ki = 1 for all i, then we must require
that j ≤ n.

Proof. Let g = [x, y, z] be a nonperiodic solution of E. We have

xpzxq = xp′
y

n∏
i=1

(xki−p−qy)xq′ .

We show that there exists m ≥ 1 such that xp ∼p ymx. First, if p = 0, this is
trivial. Second, if p > 0 and ki > p + q for some i, then p′ = 0 and we can let m be
the smallest number i such that ki > p + q. Finally, if p > 0 and ki = p + q for all i,
then p′ = 0 and xp is a prefix of yn+1xq′ , which either has a prefix yn+1x (if q′ ≥ 1)
or is a prefix of yn+1x (if q′ = 0), and in either case we can let m = n + 1. We have
shown that xp ∼p ymx. Similarly, xq ∼s xy

m′
for some m′ ≥ 1.

If x and y are powers of a common word, then g is periodic, so it follows from
Lemma 4.1 that x and y are of the claimed form. Now g is a solution of E if and only if

z = x−p+p′
y

n∏
i=1

(xki−p−qy)xq′−q

= x−p+p′
xp−1uvxq

n∏
i=1

(xki−p−qxp−1uvxq)xq′−q

= xp′−1uv

n∏
i=1

(xki−1uv)xq′

and if this is a well-defined word, despite p′ − 1 being negative in the case p′ = 0. If
ki ≥ 2 for some i or if q′ ≥ 1, then xp′−1 is followed by (uv)rx = x(vu)r for some
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r ≥ 1, making z a well-defined word. If ki = 1 for all i and p′ = q′ = 0, then

z = x−1uv

n∏
i=1

(uv) = ((uv)ju)−1(uv)n+1 = v(uv)n−j

which is a well-defined word if and only if j ≤ n (or if u = ε and vn−j+1 = ε, but that
only gives periodic solutions).

Lemma 6.4. Let E be the equation BME4. If [x, y, z] is a nonperiodic solution of E,
then

x = (uv)ju, y = xp−1uv(xk−1uv)m, z = (vuxk−1)nvuxq−1 (4)

for some u, v ∈ Σ∗ and j ≥ 0. Moreover, every morphism defined by these formulas is
a solution of E, except that if k = 1 and p = 0, then we must require j ≤ m, and if
k = 1 and q = 0, then we must require j ≤ n.

Proof. Let g = [x, y, z] be a nonperiodic solution of E. We have

(xk−py)n+1xk = xk(zxk−q)m+1,

so Lemma 4.2 gives

xk−py = (st)m+1, zxk−q = (ts)n+1, xk = (st)is

for some s, t ∈ Σ∗ and i ∈ N.
If i = 0, then s = xk and

y = xp−k(st)m+1 = xp−k(xkt)m+1 = xpt(xkt)m,

z = (ts)n+1xq−k = (txk)n+1xq−k = (txk)ntxq.

If we let u = x and v = t, then this matches (4) with j = 0.
If k ≥ 2 and i ≥ 1, then by Lemma 4.3, either x, s, t are powers of a common word,

making g periodic, or s = (uv)ju, x = (uv)j+1u, t = vuxk−2uv for some u, v ∈ Σ∗ and
j ∈ N. We get

y = xp−k(st)m+1 = xp−k((uv)juvuxk−2uv)m+1 = xp−1uv(xk−1uv)m

z = (ts)n+1xq−k = (vuxk−2uv(uv)ju)n+1xq−k = (vuxk−1)nvuxq−1.

This matches (4) with j ≥ 1. Because uv(xk−1uv)m always begins with uvx = xvu, y
is a well-defined word even if p = 0. Similarly, z is a well-defined word even if q = 0.

If k = 1 and i ≥ 1, then

x = (st)is, y = xp−1(st)m+1, z = (ts)n+1xq−1.

If we let u = s and v = t and j = i, then this matches (4) with j ≥ 1. Finally, we have
to make sure that y and z are well-defined words even if p = 0 or q = 0. If p = 0, then
we must require i ≤ m, and if q = 0, then we must require i ≤ n.
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Lemma 6.5. Let E be the equation BME5. If [x, y, z] is a nonperiodic solution of E,
then

x = (uv)ju, y = xp−1uv(xk−1uv)mxq, z = x−1uv(xk−1uv)n (5)

for some u, v ∈ Σ∗ and j ≥ 0. Moreover, every morphism defined by these formulas is
a solution of E, except that if k = 1, then we must require that j ≤ n.

Proof. Let g = [x, y, z] be a nonperiodic solution of E. We have

(xk−pyxk−qz)n+1 = (xkz)m+n+2,

and gcd(n+ 1,m+ n+ 2) = 1, so

xk−pyxk−qz = wm+n+2, xkz = wn+1

for some w ∈ Σ∗. We get

wm+1 = wm+n+2w−n−1 = xk−pyxk−qz(xkz)−1 = xk−pyx−q.

If k = 1, then from xz = wn+1 it follows that w = uv and x = (uv)ju for some
u, v ∈ Σ∗ and j ∈ N, j ≤ n. Then

y = xp−1wm+1xq = xp−1uv(uv)mxq, z = x−1wn+1 = x−1uv(uv)n.

This matches (5).
If k ≥ 2 and |xk−1| ≤ |w|, then from xkz = wn+1 it follows that w = xk−1t for

some t ∈ Σ∗, and that xk is a prefix of xk−1tx, so x is a prefix of tx. This means that
t = uv and x = (uv)ju for some u, v ∈ Σ∗ and j ∈ N. Then

y = xp−kwm+1xq = xp−1uv(xk−1uv)mxq, z = x−kwn+1 = x−1uv(xk−1uv)n.

This matches (5). Because uv(xk−1uv)n always begins with uvx = xvu, z is a well-
defined word.

If k ≥ 2 and |w| < |xk−1|, then from xkz = wn+1 it follows that xk and wn+1 have
a common prefix of length |xk| > |xw|. By the theorem of Fine and Wilf, x and w are
powers of a common word, and this leads to g being periodic.

Lemma 6.6. Let E be the equation BME6. If [x, y, z] is a nonperiodic solution of E,
then

x = (uv)ju, y = xp−1uvxq, z = x−k
(
xk−1uv

n∏
i=1

(xki−1uv)
)m+1

(6)

for some u, v ∈ Σ∗ and j ≥ 0. Moreover, every morphism defined by these formulas is
a solution of E, except that if k = 1 and n = 0, then we must require that j ≤ m.

11



Proof. Let g = [x, y, z] be a nonperiodic solution of E. We have

(xkz)m+2 =
(
xk−py

n∏
i=1

(xki−p−qy)xk−qz
)m+1

, (7)

and therefore,

|xkz| ≤ |xk−py

n∏
i=1

(xki−p−qy)xk−qz|.

Thus xk is a prefix of xk−py
∏n

i=1(x
ki−p−qy)xk−q, and consequently, xp is a prefix of

y
∏n

i=1(x
ki−p−qy)xk−q. It follows that xp ∼p ym

′
x for some m′ ≥ 1. Similarly, we see

that xq ∼s xy
m′′

for some m′′ ≥ 1. If x and y are powers of a common word, then g
is periodic, so it follows from Lemma 4.1 that x and y are of the claimed form.

The left-hand side and right-hand side of (7) is both an (m + 2)-power and an
(m+ 1)-power, so it is an (m+ 2)(m+ 1)-power of some word w. Now g is a solution
of E if and only if

xkz = wm+1, xk−py

n∏
i=1

(xki−p−qy)xk−qz = wm+2,

so

w = wm+2w−m−1 = xk−py

n∏
i=1

(xki−p−qy)x−q

and

z = x−kwm+1 = x−k
(
xk−py

n∏
i=1

(xki−p−qy)x−q
)m+1

= x−k
(
xk−pxp−1uvxq

n∏
i=1

(xki−p−qxp−1uvxq)x−q
)m+1

= x−k
(
xk−1uv

n∏
i=1

(xki−1uv)
)m+1

.

This is always a well-defined word, except that in the case k = 1 and n = 0, we get
z = x−1(uv)m+1, and we must additionally require that j ≤ m.

7 Main Result

Let us take a closer look at the lemmas proved in the previous section. We see that
the formulas (1)–(6) that describe the nonperiodic solutions contain at most one free
numerical parameter j. The other numbers in these formulas, denoted by symbols
such as ki, p, q and so on, are actually constants defined by the morphism h. The next
example illustrates this in the case of the last lemma. In the following theorem, we
formulate this precisely in terms of parametric solutions.
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Example 7.1. Consider Lemma 6.6 and equation BME6. If p = q = m = 1 and k = 2
and n = 0, then the equation has a parametric NonPer-solution

{((UV )JU,UV (UV )JU, V UUV )} ∈ R1(2, 1).

If p = q = k = m = 1 and n = 0, then the equation has a parametric NonPer-solution

{(U,UV U, V UV ), (UV U,UV UV U, V )} ∈ R0(2, 0).

Theorem 7.2. Every nontrivial entire system Eq(h), where h is nonperiodic, and
every unbalanced equation E on three variables has a parametric NonPer-solution in
R1(2, 1) and a parametric solution in R1(2, 2).

Proof. By Theorem 5.2, the entire system Eq(h) is equivalent, up to a permutation of
the variables, to one of the equations BME1–BME6, and by Corollary 5.3, the same
is true for E if it has a nonperiodic solution. By the lemmas of Section 6, each of
the equations BME1–BME6 has a parametric NonPer-solution in R1(2, 1) and, by
Lemma 3.4, a parametric solution in R1(2, 2).

If E has only periodic solutions, then the empty set is a parametric NonPer-solution
of E, and E has a parametric solution in R1(2, 2) by Lemma 3.4.

8 Towards a Characterization for Balanced
Equations

We would like to prove a result similar to Theorem 7.2 for balanced three-variable
equations. The next theorem points towards such a result.
Theorem 8.1. Let E be a three-variable equation. Let H be a set of representatives
of all equivalence classes of morphisms {X,Y, Z}∗ → Σ∗. Then

Sol(E) =
⋃

h∈Sol(E)∩H

Sol(Eq(h)).

Proof. Every g ∈ Sol(E) is equivalent to some h ∈ H, and then h ∈ Sol(E) ∩H and
g ∈ Sol(Eq(g)) = Sol(Eq(h)).

On the other hand, if f ∈ Sol(Eq(h)) for some h ∈ Sol(E) ∩ H, then E ∈ Eq(h)
and thus f ∈ Sol(Eq(h)) ⊆ Sol(E).

If the set Sol(E) ∩H is finite, then this theorem, together with the results proved
in this article, leads to a simple parametric solution for E. Unfortunately, the set
Sol(E)∩H can be infinite, but the results in [19] give some restrictions on how complex
this set can be. This could allow us to prove a stronger version of Hmelevskii’s theorem.
Theorem 8.2. Let E be a three-variable equation. Let H be the set of morphisms of
the form BM1–BM6. Then Sol(E)∩H = (A∩H)∪ (B∩H), where A is either a finite
set or the set

{[a, aibaj , (uv)ku] | k ∈ N}
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for some i, j ∈ N and u, v ∈ Σ∗, and B is either a finite set or the set

{[a, aib(amb)paj , akb(amb)qal] | p, q ≥ 1, gcd(p+ 1, q + 1) = 1}

for some i, j, k, l,m ∈ N.

Proof. Each of the morphisms in H is either of the form [a, aibaj , w] or of the form
[a, aib(amb)paj , akb(amb)qal].

For morphisms of the form [a, aibaj , w], it was proved in [19] that E can have such
a solution for at most one pair (i, j). If we fix i and j and replace X by a and Y by
aibaj in E, we get a nontrivial one-variable equation with constants, and solving this
one-variable equation gives us the possible values for w. It is known that if such an
equation has infinitely many solutions, then there are u, v such that for each k, the
morphism that maps the remaining variable Z to (uv)ku is a solution, and there are
no other solutions, see [20].

For morphisms of the form [a, aib(amb)paj , akb(amb)qal], it was proved in [19] that
if E has infinitely many such solutions, then the set of such solutions in Sol(E) is

{[a, aib(amb)paj , akb(amb)qal] | p, q ≥ 1, gcd(p+ 1, q + 1) = 1}

for some i, j, k, l,m ∈ N.

We expect that every nontrivial three-variable equation has a parametric solution
in Rd(2, q) for some fixed numbers d, q, perhaps even for d = 2 and q = 3. However,
proving this kind of a result requires additional work in the future.
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