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Abstract. The set of all constant-free word equations satisfied by a given
morphism is called an entire system of equations. We show that in the
three-variable case, the set of nonperiodic solutions of any entire system
can be described using parametric formulas with just one numerical
parameter. We also show how the solution set of any equation can be
represented as a union of solution sets of entire systems. Even though
an infinite union is needed in some cases, this still points towards a
stronger version of Hmelevskii’s theorem about parametric solutions of
three-variable word equations.
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1 Introduction

Word equations have been studied both from an algorithmic and algebraic point
of view. Some well-known results are that the complexity of the satisfiability
problem of word equations can be solved in nondeterministic linear space [7], and
that every system of word equations is equivalent to a finite subsystem [1, 4].

In this article, we concentrate on constant-free equations, and all equations are
assumed to be constant-free from now on. For some relations between constant-
free equations and equations with constants, see [16].

Equations with one or two variables are trivial. The three-variable case, on the
other hand, is highly nontrivial, while simultaneously being much simpler than
the four-variable case. Some examples of difficult results about three-variable
equations are Hmelevskii’s theorem that every three-variable equation has a
parametric solution [6] (this does not hold for equations with four or more
variables), and a bound 18 for the size of independent systems [12] (no finite
bound is known for equations with four or more variables).

Hmelevskii’s theorem, in particular, is relevant for this article. The original
proof, and even the simpler modernized version of that proof in [8, 14], is very
long. Also, while the basic concept of parametric solutions is simple, the actual
parametric formulas that arise from the proof can be very complicated. They
were analyzed in [13, 14], and it was proved, for example, that the number of
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numerical parameters needed in these formulas is at most logarithmic with respect
to the length of the equation, and the total length of the formulas is at most
exponential.

In this article, we find out that for a large number of three-variable equations
and systems of equations, namely, for so-called entire systems and unbalanced
equations, the set of solutions can be described using explicitly given formulas
that are quite simple. In particular, only one numerical parameter is needed to
represent nonperiodic solutions. We also outline a strategy to extend our result
to all three-variable equations, although one numerical parameter will no longer
be sufficient in that case. This can potentially lead to a much stronger and more
explicit version of Hmelevskii’s theorem in the future.

2 Preliminaries

First, we go through some basic definitions and lemmas abouts words. For more,
see [9, 10].

Let N denote the set of nonnegative integers. Throughout the article, let Σ
be an alphabet that contains at least two letters a and b. Let ε denote the empty
word.

A word u is a factor (prefix, suffix ) of a word w if there exist words x, y such
that w = xuy (w = uy, w = xu, respectively). If one of words u, v is a prefix
(suffix) of the other, we use the notation u ∼p v (u ∼s v, respectively).

If w ∈ Σ∗ and n ∈ N, then wn is called a power of w, or more specifically,
an n-power of w. If u is a prefix of w, then wnu is a called a fractional power
of w. We also use negative powers as follows: If w = uv, then u−1w = v and
wv−1 = u. If x is not a prefix (suffix) of w, then x−1w (wx−1, respectively) is
not defined, so whenever we use expressions like these, we have to make sure
that they represent well-defined words.

Let Ξ be another alphabet. A mapping h : Ξ∗ → Σ∗ is a morphism if
h(UV ) = h(U)h(V ) for all U, V ∈ Ξ∗. The morphism h is periodic if there exists
w ∈ Σ∗ such that h(U) ∈ w∗ for all U ∈ Ξ∗, and nonperiodic otherwise.

Next, we state some well-known results that are needed later.

Lemma 1. Let x, y ∈ Σ∗. The following are equivalent:

– x and y are powers of a common word.
– xy = yx.
– x and y satisfy a nontrivial relation, that is, there exist x1, . . . , xm, y1, . . . , yn ∈
{x, y} such that (x1, . . . , xm) 6= (y1, . . . , yn) but x1 · · ·xm = y1 · · · yn.

Lemma 2. Let x, y ∈ Σ∗. If y is a fractional power of x and ends in x, then x
and y are powers of a common word.

Lemma 3. Let x, y, z ∈ Σ∗ and let xy = yz. Then x = z = ε or

x = uv, y = (uv)ju, z = vu

for some u, v ∈ Σ∗ and j ∈ N.
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The next result is one of the equivalent formulations of the periodicity theorem
of Fine and Wilf.

Theorem 4 (Fine and Wilf [3]). Let x, y ∈ Σ∗. If a power of x and a power
of y have a common prefix of length |xy| − gcd(|x|, |y|), then x and y are powers
of a common word.

Let us fix an alphabet of variables Ξ and an alphabet of constants Σ. A
word equation is a pair E = (U, V ), where U, V ∈ Ξ∗, and a solution of E is a
morphism h : Ξ∗ → Σ∗ such that h(U) = h(V ). The equation E is nontrivial if
U 6= V .

A system of equations is a set of equations. A solution of a system is a
morphism that satisfies all equations in the system. A system is nontrivial if it
contains at least one nontrivial equation.

The set of all solutions of an equation or system E is denoted by Sol(E), and
the set of all equations satisfied by a morphism h is denoted by Eq(h). Then
Eq(h) is a system of equations, and it is called an entire system. Equations or
systems E1, E2 are equivalent if Sol(E1) = Sol(E2), and morphisms h1, h2 are
equivalent if Eq(h1) = Eq(h2).

We are particularly interested in the three-variable case Ξ = {X,Y, Z}.
Throughout the article, we let X,Y, Z be distinct variables, and we use the short-
hand notation [x, y, z], where x, y, z ∈ Σ∗, for the morphism h : {X,Y, Z}∗ → Σ∗

defined by h(X) = x, h(Y ) = y, h(Z) = z.

Example 5. Consider the equation E = (XY, Y Z). We can easily check that the
morphism h = [uv, (uv)ju, vu], where u, v ∈ Σ∗ and j ∈ N, is a solution of E:

h(XY ) = uv(uv)ju = (uv)juvu = h(Y Z).

It follows from Lemma 3 that all solutions of E are of this form or of the form
[ε, u, ε].

An equation (U, V ) is balanced if every variable has as many occurrences in
U as in V , and unbalanced otherwise. Results related to balanced equations can
be found, for example, in [5] and [15]. We need the following two theorems.

Theorem 6 (Harju and Nowotka [5]). Let g, h : {X,Y, Z}∗ → Σ∗ be nonpe-
riodic morphisms such that Eq(g) 6= Eq(h). Then Eq(g)∩Eq(h) does not contain
any unbalanced equations.

Theorem 7 (Harju and Nowotka [5]). If two unbalanced equations have a
common nonperiodic solution, then they have the same set of periodic solutions.

Budkina and Markov [2] classified all three-generator subsemigroups of a
free semigroup. In the next theorem, we give a reformulation of this theorem in
terms of morphisms and equations. An essentially equivalent result was proved
independently by Spehner [17, 18]. These results have been used to study three-
variable word equations in [5] and [11], for example. In [5], there is also a good
comparison of these results.
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Theorem 8 (Budkina and Markov [2]). Every nonperiodic morphism from
{X,Y, Z}∗ to Σ∗ that satisfies a nontrivial equation is equivalent, up to a per-
mutation of the variables, to a morphism of one of the following types:

1. [a, b, w], where w ∈ {a, b}∗.
2. [a, bm, bn], where m,n ∈ N and m,n ≥ 1 and gcd(m,n) = 1.
3. [a, apbaq, ap

′
b
∏n

i=1(akib)aq
′
], where p, q, p′, q′, n, k1, . . . , kn ∈ N and pp′ =

qq′ = 0 and 1 ≤ p+ q ≤ k1, . . . , kn.
4. [a, apb(akb)m, b(akb)naq], where p, q, k,m, n ∈ N and k,m, n ≥ 1 and p, q ≤ k

and gcd(m+ 1, n+ 1) = 1.
5. [a, apb(akb)maq, b(akb)n], where p, q, k,m, n ∈ N and p, q, k,m, n ≥ 1 and

p, q ≤ k and gcd(m+ 1, n+ 1) = 1.
6. [a, apbaq, b

∏n
i=1(akib)(akb

∏n
i=1(akib))m], where p, q, k,m, n, k1, . . . , kn ∈ N

and m, p, q ≥ 1 and p, q ≤ k < p+ q ≤ k1, . . . , kn.

3 Lemmas

In this section, we prove some lemmas that are needed later.

Lemma 9. Let x, y ∈ Σ∗ and m,n, p, q ∈ N and m,n, p+ q ≥ 1. Let xp ∼p y
mx

and xq ∼s xy
n. Then x and y are powers of a common word or

x = (uv)ju, y = xp−1uvxq = xpvuxq−1

for some u, v ∈ Σ∗ and j ∈ N.

Proof. Throughout the proof, we assume that p ≥ q and, consequently, p ≥ 1.
The case p < q is symmetric and can be handled in a similar way.

First, let |y| ≥ |xp+q−1|. Then y = xp−1wxq for some word w. From xp ∼p

ymx it follows that x ∼p wx
q(xp−1wxq)m−1x. Therefore, x is a prefix of wkx for

some k ≥ 1. It follows that w = uv and x = (uv)ju for some u, v ∈ Σ∗ and j ≥ 0.
Next, let |y| < |xp+q−1| and q = 0. Then |xp| ≥ |xy| and |ymx| ≥ |xy|. From

xp ∼p y
mx it follows that x is a fractional power of y, and then from the theorem

of Fine and Wilf it follows that x and y are powers of a common word.
Next, let |y| < |xp+q−1| and q ≥ 1 and |xp| < |y|. Then y begins and ends

with powers of x that overlap by a factor of length at least |x|. By Lemma 2, x
and y are powers of a common word.

Next, let |y| < |xp+q−1| and q ≥ 1 and |x| < |y| ≤ |xp|. Then y is a fractional
power of x and ends in x. By Lemma 2, x and y are powers of a common word.

Finally, let |y| < |xp+q−1| and q ≥ 1 and |y| ≤ |x|. Then x is a fractional
power of y and ends in y. By Lemma 2, x and y are powers of a common word. ut

Lemma 10. Let x, y ∈ Σ∗ and m,n,∈ N and gcd(m,n) = 1. Let xmy = yzn.
Then x, y, z are powers of a common word or

x = (st)n, y = (st)is, z = (ts)m

for some s, t ∈ Σ∗ and i ∈ N.
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Proof. By Lemma 3, xm = uv, y = (uv)ju, zn = vu for some u, v ∈ Σ∗ and
j ∈ N. Then uv is an m-power, and because its conjugate vu is an n-power, uv
is also an n-power. By gcd(m,n) = 1, uv = wmn for some w ∈ Σ∗. We can write
w = st, u = (st)ks, v = t(st)mn−k−1 for some s, t ∈ Σ∗ and k ∈ N, k ≤ mn− 1.
Then x = (st)n and z = (ts)m and y = (st)mnj+ks. ut

Lemma 11. Let x, y, z ∈ Σ∗ and i, k ∈ N and i ≥ 1 and k ≥ 2. Let (xz)ix = yk.
Then x, y, z are powers of a common word or

x = (uv)ju, y = (uv)j+1u, z = vu((uv)j+1u)k−2uv

for some u, v ∈ Σ∗ and j ≥ 0.

Proof. If i ≥ 2 or |x| ≥ |y|, then |(xz)ix| = |yk| ≥ |xzy|, so xz and y are powers
of a common word by the theorem of Fine and Wilf, and then x, y, z are powers
of a common word.

If i = 1 and |x| < |y|, then y = sx = xt and z = tyk−2s for some s, t ∈ Σ+.
By Lemma 3, s = uv, t = vu, x = (uv)ju for some u, v ∈ Σ∗ and j ∈ N, and
then y = (uv)j+1u and z = vu((uv)j+1u)k−2uv. ut

Lemma 12. Let h : {X,Y, Z}∗ → Σ∗ be a nonperiodic morphism. If E ∈ Eq(h)
is unbalanced, then E is equivalent to Eq(h).

Proof. Every solution of Eq(h) is a solution of E. Every periodic solution of E is
a solution of all balanced equations in Eq(h), because periodic morphisms satisfy
all balanced equations, and also a solution of all unbalanced equations in Eq(h)
by Theorem 7. If g is a nonperiodic solution of E, then E ∈ Eq(g) ∩ Eq(h), so it
must be Eq(g) = Eq(h) by Theorem 6. This means that g is a solution of Eq(h).
We have shown that E and Eq(h) have the same solutions. ut

4 Solutions of Entire Systems

In this section, we go through all entire systems Eq(h), where h : {X,Y, Z}∗ → Σ∗

is a nonperiodic morphism that satisfies a nontrivial equation. By Theorem 8,
we can concentrate on the morphisms specified in that theorem.

In each case, with the help of Lemma 12, we find that the entire system is
equivalent to a relatively simple unbalanced equation. Then we proceed to find
an explicit description of all nonperiodic solutions of that equation. In each such
description, there are two word parameters, denoted by u and v, and possibly
one numerical parameter, denoted by j.

The formulas that describe the nonperiodic solutions also give some periodic
solutions when u and v are powers of a common word. In some cases, all periodic
solutions are obtained this way, but in other cases, some periodic solutions are
missing. If we want to represent the set of all solutions, both the nonperiodic
and periodic ones, we can always do that by adding separate formulas that give
all the periodic solutions, although then we need two numerical variables.
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Lemma 13. Let n, k0, . . . , kn ∈ N. Let

h = [a, b, ak0

n∏
i=1

baki ].

Then Eq(h) is equivalent to the equation

E = (Xk0

n∏
i=1

Y Xki , Z)

and [x, y, z] is a solution of E if and only if

x = u, y = v, z = uk0

n∏
i=1

vuki (1)

for some u, v ∈ Σ∗.

Proof. It is easy to check that h is a solution of E. Thus E ∈ Eq(h), and E is
unbalanced, so E and Eq(h) are equivalent by Lemma 12.

Let g = [x, y, z] be a solution of E. We can let x and y be arbitrary words u
and v, and then g is a solution if and only if z = uk0

∏n
i=1 vu

ki . ut

Lemma 14. Let m,n ∈ N and m,n ≥ 1 and gcd(m,n) = 1. Let

h = [a, bm, bn].

Then Eq(h) is equivalent to the equation

E = (Y n, Zm)

and [x, y, z] is a solution of E if and only if

x = u, y = vm, z = vn (2)

for some u, v ∈ Σ∗.

Proof. It is easy to check that h is a solution of E. Thus E ∈ Eq(h), and E is
unbalanced, so E and Eq(h) are equivalent by Lemma 12.

Let g = [x, y, z] be a solution of E. Then yn = zm is both an n-power and
an m-power, so it is also an mn-power of some word v because gcd(m,n) = 1.
This means that y = vm and z = vn. Then x can be an arbitrary word u and
this always gives a solution g. ut

Lemma 15. Let p, q, p′, q′, n, k1, . . . , kn ∈ N and pp′ = qq′ = 0 and 1 ≤ p+ q ≤
k1, . . . , kn. Let

h =
[
a, apbaq, ap

′
b

n∏
i=1

(akib)aq
′
]
.
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Then Eq(h) is equivalent to the equation

E =
(
XpZXq, Xp′

Y

n∏
i=1

(Xki−p−qY )Xq′
)
.

If [x, y, z] is a nonperiodic solution of E, then

x = (uv)ju, y = xp−1uvxq, z = xp
′−1uv

n∏
i=1

(xki−1uv)xq
′

(3)

for some u, v ∈ Σ∗ and j ≥ 0. Moreover, every morphism defined by these
formulas is a solution of E, except that if p′ = q′ = 0 and ki = 1 for all i, then
we must require that j ≤ n.

Proof. It is easy to check that h is a solution of E. Thus E ∈ Eq(h), and E is
unbalanced, so E and Eq(h) are equivalent by Lemma 12.

Let g = [x, y, z] be a nonperiodic solution of E. We have

xpzxq = xp
′
y

n∏
i=1

(xki−p−qy)xq
′
,

so xp ∼p y
mx for some m ≥ 1. If p = 0, this is trivial, and if p > 0, then p′ = 0

and m is the smallest number i such that ki > p − q, or m = n + 1 if such i
does not exist. Similarly, xq ∼s xy

m′
for some m′ ≥ 1. If x and y are powers of a

common word, then g is periodic, so it follows from Lemma 9 that x and y are
of the claimed form. Now g is a solution of E if and only if

z = x−p+p′
y

n∏
i=1

(xki−p−qy)xq
′−q

= x−p+p′
xp−1uvxq

n∏
i=1

(xki−p−qxp−1uvxq)xq
′−q

= xp
′−1uv

n∏
i=1

(xki−1uv)xq
′

and if this is a well-defined word, despite p′ − 1 being negative in the case p′ = 0.
If ki ≥ 2 for some i or if q′ ≥ 1, then xp

′−1 is followed by (uv)rx = x(vu)r for
some r ≥ 1, making z a well-defined word. If ki = 1 for all i and p′ = q′ = 0, then

z = x−1uv

n∏
i=1

(uv) = ((uv)ju)−1(uv)n+1 = v(uv)n−j

which is a well-defined word if and only if j ≤ n (or if u = ε and vn−j+1 = ε, but
that only gives periodic solutions). ut
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Lemma 16. Let p, q, k,m, n ∈ N and k,m, n ≥ 1 and p, q ≤ k and gcd(m +
1, n+ 1) = 1. Let

h = [a, apb(akb)m, b(akb)naq].

Then Eq(h) is equivalent to the equation

E = ((Xk−pY )n+1Xk, Xk(ZXk−q)m+1).

If [x, y, z] is a nonperiodic solution of E, then

x = (uv)ju, y = xp−1uv(xk−1uv)m, z = (vuxk−1)nvuxq−1 (4)

for some u, v ∈ Σ∗ and j ≥ 0. Moreover, every morphism defined by these
formulas is a solution of E, except that if k = 1 and p = 0, then we must require
j ≤ m, and if k = 1 and q = 0, then we must require j ≤ n.

Proof. It is easy to check that h is a solution of E. Thus E ∈ Eq(h), and E is
unbalanced, so E and Eq(h) are equivalent by Lemma 12.

Let g = [x, y, z] be a nonperiodic solution of E. We have

(xk−py)n+1xk = xk(zxk−q)m+1,

so Lemma 10 gives

xk−py = (st)m+1, zxk−q = (ts)n+1, xk = (st)is

for some s, t ∈ Σ∗ and i ∈ N.
If i = 0, then s = xk and

y = xp−k(st)m+1 = xp−k(xkt)m+1 = xpt(xkt)m,

z = (ts)n+1xq−k = (txk)n+1xq−k = (txk)ntxq.

If we let u = x and v = t, then this matches (4) with j = 0.
If k ≥ 2 and i ≥ 1, then by Lemma 11, either x, s, t are powers of a common

word, making g periodic, or s = (uv)ju, x = (uv)j+1u, t = vuxk−2uv for some
u, v ∈ Σ∗ and j ∈ N. We get

y = xp−k(st)m+1 = xp−k((uv)juvuxk−2uv)m+1 = xp−1uv(xk−1uv)m

z = (ts)n+1xq−k = (vuxk−2uv(uv)ju)n+1xq−k = (vuxk−1)nvuxq−1.

This matches (4) with j ≥ 1. Because uv(xk−1uv)m always begins with uvx =
xvu, y is a well-defined word even if p = 0. Similarly, z is a well-defined word
even if q = 0.

If k = 1 and i ≥ 1, then

x = (st)is, y = xp−1(st)m+1, z = (ts)n+1xq−1.

If we let u = s and v = t and j = i, then this matches (4) with j ≥ 1. Finally, we
have to make sure that y and z are well-defined words even if p = 0 or q = 0. If
p = 0, then we must require i ≤ m, and if q = 0, then we must require i ≤ n. ut
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Lemma 17. Let p, q, k,m, n ∈ N and p, q, k,m, n ≥ 1 and p, q ≤ k and gcd(m+
1, n+ 1) = 1. Let

h = [a, apb(akb)maq, b(akb)n].

Then Eq(h) is equivalent to the equation

E = ((Xk−pY Xk−qZ)n+1, (XkZ)m+n+2).

If [x, y, z] is a nonperiodic solution of E, then

x = (uv)ju, y = xp−1uv(xk−1uv)mxq, z = x−1uv(xk−1uv)n (5)

for some u, v ∈ Σ∗ and j ≥ 0. Moreover, every morphism defined by these
formulas is a solution of E, except that if k = 1, then we must require that j ≤ n.

Proof. It is easy to check that h is a solution of E. Thus E ∈ Eq(h), and E is
unbalanced, so E and Eq(h) are equivalent by Lemma 12.

Let g = [x, y, z] be a nonperiodic solution of E. We have

(xk−pyxk−qz)n+1 = (xkz)m+n+2,

and gcd(n+ 1,m+ n+ 2) = 1, so

xk−pyxk−qz = wm+n+2, xkz = wn+1

for some w ∈ Σ∗. We get

wm+1 = wm+n+2w−n−1 = xk−pyxk−qz(xkz)−1 = xk−pyx−q.

If k = 1, then from xz = wn+1 it follows that w = uv and x = (uv)ju for
some u, v ∈ Σ∗ and j ∈ N, j ≤ n. Then

y = xp−1wm+1xq = xp−1uv(uv)mxq, z = x−1wn+1 = x−1uv(uv)n.

This matches (5).
If k ≥ 2 and |xk−1| ≤ |w|, then from xkz = wn+1 it follows that w = xk−1t

for some t ∈ Σ∗, and that xk is a prefix of xk−1tx, so x is a prefix of tx. This
means that t = uv and x = (uv)ju for some u, v ∈ Σ∗ and j ∈ N. Then

y = xp−kwm+1xq = xp−1uv(xk−1uv)mxq, z = x−kwn+1 = x−1uv(xk−1uv)n.

This matches (5). Because uv(xk−1uv)n always begins with uvx = xvu, z is a
well-defined word.

If k ≥ 2 and |w| < |xk−1|, then from xkz = wn+1 it follows that xk and wn+1

have a common prefix of length |xk| > |xw|. By the theorem of Fine and Wilf, x
and w are powers of a common word, and this leads to g being periodic. ut

Lemma 18. Let p, q, k,m, n, k1, . . . , kn ∈ N and m, p, q ≥ 1 and p, q ≤ k <
p+ q ≤ k1, . . . , kn. Let

h =
[
a, apbaq, b

n∏
i=1

(akib)
(
akb

n∏
i=1

(akib)
)m]

.
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Then Eq(h) is equivalent to the equation

E =
(

(XkZ)m+2,
(
Xk−pY

n∏
i=1

(Xki−p−qY )Xk−qZ
)m+1)

.

If [x, y, z] is a nonperiodic solution of E, then

x = (uv)ju, y = xp−1uvxq, z = x−k
(
xk−1uv

n∏
i=1

(xki−1uv)
)m+1

(6)

for some u, v ∈ Σ∗ and j ≥ 0. Moreover, every morphism defined by these
formulas is a solution of E, except that if k = 1 and n = 0, then we must require
that j ≤ m.

Proof. It is easy to check that h is a solution of E. Thus E ∈ Eq(h), and E is
unbalanced, so E and Eq(h) are equivalent by Lemma 12.

Let g = [x, y, z] be a nonperiodic solution of E. We have

(xkz)m+2 =
(
xk−py

n∏
i=1

(xki−p−qy)xk−qz
)m+1

, (7)

and therefore,

|xkz| ≤ |xk−py
n∏

i=1

(xki−p−qy)xk−qz|.

Thus xk is a prefix of xk−py
∏n

i=1(xki−p−qy)xk−q, and consequently, xp is a prefix

of y
∏n

i=1(xki−p−qy)xk−q. It follows that xp ∼p y
m′
x for some m′ ≥ 1. Similarly,

we see that xq ∼s xy
m′′

for some m′′ ≥ 1. If x and y are powers of a common
word, then g is periodic, so it follows from Lemma 9 that x and y are of the
claimed form.

The left-hand side and right-hand side of (7) is both an (m+ 2)-power and
an (m+ 1)-power, so it is an (m+ 2)(m+ 1)-power of some word w. Now g is a
solution of E if and only if

xkz = wm+1, xk−py

n∏
i=1

(xki−p−qy)xk−qz = wm+2,

so

w = wm+2w−m−1 = xk−py

n∏
i=1

(xki−p−qy)x−q
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and

z = x−kwm+1 = x−k
(
xk−py

n∏
i=1

(xki−p−qy)x−q
)m+1

= x−k
(
xk−pxp−1uvxq

n∏
i=1

(xki−p−qxp−1uvxq)x−q
)m+1

= x−k
(
xk−1uv

n∏
i=1

(xki−1uv)
)m+1

.

This is always a well-defined word, except that in the case k = 1 and n = 0, we
get z = x−1(uv)m+1, and we must additionally require that j ≤ m. ut

Let us take a closer look at the lemmas proved in this section. We see that the
formulas (1)–(6) that describe the nonperiodic solutions contain at most one free
numerical variable j. The other numbers in these formulas, denoted by symbols
such as ki, p, q and so on, are actually constants defined by the morphism h. The
next example illustrates this in the case of the last lemma.

Example 19. Consider Lemma 18.
If p = q = m = 1 and k = 2 and n = 0, then a nonperiodic solution [x, y, z]

of E is of the form

x = (uv)ju, y = uv(uv)ju, z = vuuv

for some u, v ∈ Σ∗ and j ≥ 0.
If p = q = k = m = 1 and n = 0, then a nonperiodic solution [x, y, z] of E is

of the form

x = (uv)ju, y = uv(uv)ju, z = v(uv)1−j

for some u, v ∈ Σ∗ and j ∈ {0, 1}.

5 Connections to Hmelevskii’s Theorem and Future Work

In Section 4, we found an explicit representation for the nonperiodic solutions of
every nontrivial entire system of three-variable equations. By the next theorem,
this also gives a representation for the nonperiodic solutions of every unbalanced
three-variable equation.

Theorem 20. The family of the sets Sol(Eq(h)), where h : {X,Y, Z}∗ → Σ∗ is
a nonperiodic morphism that satisfies a nontrivial equation, is the same as the
family of the sets Sol(E), where E is an unbalanced three-variable equation with
a nonperiodic solution.

Proof. In Section 4, we proved that every such entire system Eq(h) is equivalent
to an unbalanced equation. On the other hand, every unbalanced equation E
with a nonperiodic solution h is equivalent to Eq(h) by Lemma 12. ut
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As was mentioned in the introduction, Hmelevskii proved that every three-
variable equation has a parametric solution (for a precise definition of parametric
words and parametric solutions, see, for example, [6] or [14]). The representations
we found for entire systems are much simpler than the ones guaranteed by
Hmelevskii’s theorem. In particular, the best known upper bound for the number
of numerical parameters in parametric solutions of three-variable equations is
logarithmic with respect to the length of the equation. The formulas we found in
the previous section, on the other hand, use at most one numerical parameter
(although if we want to represent also periodic solutions, we need two numerical
parameters).

We would like to prove a similar result also for balanced three-variable
equations. The next theorem points towards such a result.

Theorem 21. Let E be a three-variable equation. Let H be a set of representa-
tives of all equivalence classes of morphisms {X,Y, Z}∗ → Σ∗. Then

Sol(E) =
⋃

h∈Sol(E)∩H

Sol(Eq(h)).

Proof. Every g ∈ Sol(E) is equivalent to some h ∈ H, and then h ∈ Sol(E) ∩H
and g ∈ Sol(Eq(g)) = Sol(Eq(h)).

On the other hand, if f ∈ Sol(Eq(h)) for some h ∈ Sol(E)∩H, then E ∈ Eq(h)
and thus f ∈ Sol(Eq(h)) ⊆ Sol(E). ut

If the set Sol(E) ∩H is finite, then this theorem, together with the results
in Section 4, gives a simple parametric solution for E. Unfortunately, the set
Sol(E) ∩H can be infinite, but the results in [11] give some restrictions on how
complicated this set can be. This could allow us to prove a stronger version of
Hmelevskii’s theorem.

In particular, we expect that every three-variable equation has a parametric
solution that uses only three numerical parameters, instead of a logarithmic
number. However, proving this kind of result requires additional work in the
future.
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17. Spehner, J.C.: Quelques problémes d’extension, de conjugaison et de présentation
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