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Abstract. For a given language L, we study the languages X such that for all distinct words
u, v ∈ L, there exists a word x ∈ X that appears a different number of times as a factor in u and
in v. In particular, we are interested in the following question: For which languages L does there
exist a finite language X satisfying the above condition? We answer this question for all regular
languages and for all sets of factors of infinite words.
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1. Introduction

The motivation for this article comes from two sources. First, a famous question about finite automata
is the separating words problem. If sep(u, v) is the size of the smallest DFA that accepts one of the
words u, v and rejects the other, then what is the maximum of the numbers sep(u, v) when u and v
run over all words of length at most n? This question was first studied by Goralčı́k and Koubek [1],
and they proved an upper bound o(n) and a lower bound Ω(log n). The upper bound was improved
to O(n2/5(log n)3/5) by Robson [2], and this remains the best known result. A survey and some
additional results can be found in the article by Demaine, Eisentat, Shallit and Wilson [3]. Several
variations of the problem exist. For example, NFAs [3] or context-free grammars [4] could be used
instead of DFAs. More generally, we could try to separate two disjoint languages A and B by provid-
ing a language X from some specified family of languages such that A ⊆ X and B ∩X = ∅. As an
example related to logic, see [5]. Alternatively, we could try to separate many words w1, . . . , wk by
providing languages X1, . . . , Xk with some specific properties such that wi ∈ Xj if and only if i = j.
As an example, see [6].
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Let |w|x denote the number of occurrences of a factor x in a word w. A simple observation that
can be made about the separating words problem is that if |u|x 6= |v|x, then |u|x 6≡ |v|x (mod p) for
some relatively small prime p (more specifically, p = O(log(|uv|))), and the number of occurrences
of x modulo p can be easily counted by a DFA with |x|p states. So if u and v have a different number
of occurrences of some short factor x, then sep(u, v) is small, see [3] for more details. Unfortunately,
this approach does not provide any general bounds, and more complicated ideas are required to prove
the results mentioned in the previous paragraph.

In this article, we are interested in the question of how well words can be separated if we forget
about automata and only consider the simple idea of counting occurrences of factors. For any two
distinct words u and v of length n, we can find a factor x of length bn/2c + 1 or less such that
|u|x 6= |v|x. A proof of this simple fact can be found in an article by Manuch [7]. See [8] for a
variation where also the positions of the occurrences modulo a certain number are taken into account.
Trying to separate more than two words (possibly infinitely many) at once by counting the numbers of
occurrences of more than one factor leads to some interesting questions such as the following one.

Question 1. Given a language L, does there exist a finite language X such that for all distinct words
u, v ∈ L, there exists x ∈ X such that |u|x 6= |v|x?

The second source of motivation is k-abelian complexity. For a positive integer k, words u and
v are said to be k-abelian equivalent if |u|x = |v|x for all factors x of length at most k. The factor
complexity of an infinite word w is a function that maps a number n to the number of factors of w of
length n. The k-abelian complexity of w similarly maps a number n to the number of k-abelian equiv-
alence classes of factors of w of length n. k-abelian equivalence was first studied by Karhumäki [9].
Many basic properties were proved by Karhumäki, Saarela and Zamboni in the article [10], where also
k-abelian complexity was introduced. Several articles have been published about k-abelian complex-
ity [11, 12, 13], and about abelian complexity (that is, the case k = 1) already earlier [14]. Perhaps
the most interesting one from the point of view of this paper is [11], where the relationships between
the k-abelian complexities of an infinite word for different values of k were studied. However, the
following simple question was not considered in that article.

Question 2. Given an infinite word, does there exist an integer k ≥ 1 such that the k-abelian com-
plexity of the word is the same as the usual factor complexity of the word?

For a given language, we can define its growth function and k-abelian growth function as concepts
analogous to the factor complexity and k-abelian complexity of an infinite word. Then the above
question can be generalized. We are specifically interested in the case of regular languages. Some
connections between k-abelian equivalence and regular languages have been studied by Cassaigne,
Karhumäki, Puzynina and Whiteland [15].

Question 3. Given a language, does there exist an integer k ≥ 1 such that the growth function of the
language is the same as the k-abelian growth function of the language?

In this article, we first define some concepts related to Question 1 and prove basic properties
about them. Question 1 and Question 3 are equivalent, but this requires a short proof. We answer
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these questions for two families of languages: sets of factors of infinite words (this corresponds to
Question 2) and regular languages. In the first case, the answer is positive if and only if the word is
ultimately periodic. This result is not very surprising, but it leads to some further questions and results
related to aperiodic words. Our main result is a characterization in the case of regular languages: The
answer is positive if and only if the language does not have a subset of the form xw∗yw∗z for any
words w, x, y, z such that wy 6= yw.

This article is an extended journal version of the conference article [16]. The main differences
are the following: Theorems 4.3, 4.4, 4.5 and 5.5 are entirely new. The proof of Lemma 5.3 and
Lemmas 2.2 and 2.3 that are needed in it were omitted from the conference version, but are now
included.

2. Preliminaries

Throughout the article, we use the symbol Σ to denote an alphabet. All words are over Σ unless
otherwise specified. The empty word is denoted by ε.

Primitive words and Lyndon words. A nonempty word is primitive if it is not a power of any
shorter word. The primitive root of a nonempty word w is the unique primitive word p such that
w ∈ p+. The primitive root of w is denoted by ρ(w). It is well known that nonempty words u, v have
the same primitive root if and only if they commute, that is, uv = vu.

Words u and v are conjugates if there exist words p, q such that u = pq and v = qp. All conjugates
of a primitive word are primitive. If two nonempty words are conjugates, then their primitive roots
are conjugates. It is well known that if uw = wv and u 6= ε, then there exist words p, q such that
ρ(u) = pq, ρ(v) = qp and w ∈ (pq)∗p.

We can assume that the alphabet Σ is ordered. This order can be extended to a lexicographic
order of Σ∗. A Lyndon word is a primitive word that is lexicographically smaller than all of its other
conjugates. We use Lyndon words when we need to pick a canonical representative from the conjugacy
class of a primitive word. The fact that this representative happens to be lexicographically minimal is
not actually important in this article.

The Lyndon root of a nonempty word w is the unique Lyndon word that is conjugate to ρ(w). The
Lyndon root of w is denoted by λ(w). We state here the well known periodicity theorem of Fine and
Wilf [17], and we use it to prove a simple result about Lyndon roots.

Theorem 2.1. (Fine and Wilf)
Let u, v be nonempty words. If the infinite words uω and vω have a common prefix of length |uv| −
gcd(|u|, |v|), then u and v are powers of a common word of length gcd(|u|, |v|).

Lemma 2.2. Let u, v be nonempty words. If um and vn have a common factor of length |uv|, then
λ(u) = λ(v).

Proof:
A factor of um of length |uv| is of the form (u1)

iu2, where u1 is a conjugate of u, u2 is a prefix of
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u1, and i ≥ 1. Similarly, a factor of vn of length |uv| is of the form (v1)
jv2, where v1 is a conjugate

of v, v2 is a prefix of v1, and j ≥ 1. If these factors are the same, then (u1)
iu2 = (v1)

jv2, so uω1 and
vω1 have a common prefix of length |uv|. It follows from Theorem 2.1 that u1 and v1 are powers of
a common word and therefore have the same primitive root. This primitive root is conjugate to ρ(u)
and to ρ(v), so λ(u) = λ(v). ut

Occurrences. Let u and w be words. An occurrence of u in w is a triple (x, u, y) such that w =
xuy. The number of occurrences of u in w is denoted by |w|u. We allow the case u = ε, and then
|w|ε = |w|+ 1.

Let (x, u, y) and (x′, u′, y′) be occurrences in w. If

max(|x|, |x′|) < min(|xu|, |x′u′|),

then we say that these occurrences have an overlap of length

min(|xu|, |x′u′|)−max(|x|, |x′|).

If |x| ≥ |x′| and |y| ≥ |y′|, then we say that (x, u, y) is contained in (x′, u′, y′).
If (x, u, y) is an occurrence in w and u ∈ L, then (x, u, y) is an L-occurrence in w. It is a maximal

L-occurrence in w if it is not contained in any other L-occurrence in w.
It is well known that if p is a primitive word, then p cannot be a factor of p2 in a nontrivial way,

or more formally, p2 does not have any other p-occurrences than the trivial ones (ε, p, p) and (p, p, ε).
Thus the only p-occurrences in pn are (pi, p, pn−1−i) for i ∈ {0, . . . , n− 1}, and if pwp is a factor of
pn, then w is a power of p. We can prove the following lemma.

Lemma 2.3. Let w be a word and p be a primitive word. If two p+-occurrences in w have an overlap
of length at least |p|, then they are contained in the same maximal p+-occurrence. Moreover, every
p+-occurrence in w is contained in exactly one maximal p+-occurrence.

Proof:
To prove the first claim, let (x, pm, y) and (x′, pn, y′) be two p+-occurrences in w and let |x| ≤ |x′|. If
these occurrences have an overlap of length at least |p|, then the occurrence (x′, p, pn−1y′) is contained
in (x, pm, y). The number |x′| − |x| must be divisible by |p|, because otherwise p would be a factor of
p2 in a nontrivial way. Let |x′|− |x| = kp. Then (x, pk+n, y′) is an occurrence in w. If |y| ≥ |y′|, then
both (x, pm, y) and (x′, pn, y′) are contained in (x, pk+n, y′), which is contained in some maximal
occurrence. On the other hand, if |y| < |y′|, then (x′, pn, y′) is contained in (x, pm, y), which is
contained in some maximal occurrence. This proves the first claim.

If a p+-occurrence in w is contained in two maximal p+-occurrences, then those two maximal
occurrences are contained in the same maximal occurrence by the first part of the proof. By the
definition of maximality, these maximal occurrences are actually the same. This proves the second
claim. ut
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k-abelian equivalence. Let k be a positive integer. Words u, v ∈ Σ∗ are k-abelian equivalent,
denoted by u ≡k v, if |u|x = |v|x for all x ∈ Σ≤k. Clearly, k-abelian equivalence is an equivalence
relation. By Theorem 2.4, it is also a congruence, that is, if u ≡k u

′ and v ≡k v
′, then uv ≡k u

′v′. A
proof of the next theorem can be found in [10].

Theorem 2.4. Let u, v be words and let k ≥ 1. If |u|, |v| ≤ 2k− 1, then u ≡k v if and only if u = v.
If |u|, |v| ≥ k − 1, then the following are equivalent:

1. u ≡k v.

2. |u|x = |v|x for all x ∈ Σk and u, v have a common prefix of length k − 1.

3. |u|x = |v|x for all x ∈ Σk and u, v have a common suffix of length k − 1.

4. |u|x = |v|x for all x ∈ Σk ∪ Σk−1.

We are going to use the following simple lemma a couple of times when showing that two words
are k-abelian equivalent.

Lemma 2.5. If u, v, w, x ∈ Σ∗, |v| = k − 1, and |x| = k, then |uvw|x = |uv|x + |vw|x.

Example 2.6. The words aabab and abaab are 2-abelian equivalent: They have the same prefix of
length one, one occurrence of aa, two occurrences of ab, one occurrence of ba, and no occurrences of
bb.

The words aba and bab have the same number of occurrences of every factor of length two, but
they are not 2-abelian equivalent, because they have a different number of occurrences of a.

Let k ≥ 1. The words u = akbak−1 and v = ak−1bak are k-abelian equivalent: They have
the same prefix of length k − 1, and |u|x = 1 = |v|x if x = ak or x = aibak−i−1 for some
i ∈ {0, . . . , k− 1}, and |u|x = 0 = |v|x for all other factors x of length k. On the other hand, u and v
are not (k + 1)-abelian equivalent, because they have a different prefix of length k.

Growth functions and factor complexity. The growth function of a language L is the function

PL : Z≥0 → Z≥0, PL(n) = |L ∩ Σn|

mapping a number n to the number of words of length n in L. The cumulative growth function of L is
the function

PL : Z≥0 → Z≥0, PL(n) = |L ∩ Σ≤n| =
n∑

i=0

PL(i)

For an infinite word w, let Fact(w) be the set of factors of w and let Factn(w) = Fact(w) ∩ Σn

be the set of length-n factors of w. The factor complexity of an infinite word w, denoted by Pw, is the
growth function of Fact(w). In other words, Pw(n) = |Factn(w)| for all n.

We can also define k-abelian versions of these functions. The k-abelian growth function of a
language L is the function

Pk
L : Z≥0 → Z≥0, PL(n) = |(L ∩ Σn)/≡k|,
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where (L ∩ Σn)/≡k denotes the set of equivalence classes of elements of L ∩ Σn. The k-abelian
complexity of an infinite word w, denoted by Pk

w, is the k-abelian growth function of the set of factors
of w.

An infinite word w is ultimately periodic if there exist finite words u, v such that w = uvω. An
infinite word is aperiodic if it is not ultimately periodic. It was proved by Morse and Hedlund [18]
that if w is ultimately periodic, then Pw(n) = O(1), and if w is aperiodic, then Pw(n) ≥ n+ 1 for all
n. An infinite word w is called Sturmian if Pw(n) = n+ 1 for all n.

3. Separating sets of factors

A language X is a separating set of factors (SSF) of a language L if for all distinct words u, v ∈ L,
there exists x ∈ X such that |u|x 6= |v|x. The set X is size-minimal if no set of smaller cardinality is
an SSF of L, and it is inclusion-minimal if X does not have a proper subset that is an SSF of L.

Example 3.1. Let Σ = {a, b}. The language a∗ has two inclusion-minimal SSFs: {ε} and {a}. Both
of them are also size-minimal. The language Σ2 = {aa, ab, ba, bb} has eight inclusion-minimal SSFs:

{a, ab}, {a, ba}, {b, ab}, {b, ba}, {aa, ab, ba}, {aa, ab, bb}, {aa, ba, bb}, {ab, ba, bb}.

The first four are size-minimal.

The following lemma contains some very basic results related to the above defitions. In particular,
it proves that every language has an inclusion-minimal SSF, and all SSFs are completely characterized
by the inclusion-minimal ones.

Lemma 3.2. Let L and X be languages.

1. If L 6= ∅, then L has a proper subset that is an SSF of L.

2. If X is an SSF of L and K ⊆ L, then X is an SSF of K.

3. If X is an SSF of L and X ⊆ Y , then Y is an SSF of L.

4. If X is an SSF of L, then X has a subset that is an inclusion-minimal SSF of L.

Proof:
To prove the first claim, let w ∈ L be of minimal length and let X = L r {w}. Let u, v ∈ L and
u 6= v. By symmetry, we can assume that |u| ≤ |v| and v 6= w. Then v ∈ X and |u|v = 0 6= 1 = |v|v.
This shows that X is an SSF of L.

The second and third claims follow directly from the definition of an SSF.
The fourth claim is easy to prove if X is finite. In the general case, it can be proved by Zorn’s

lemma as follows. Consider the partially ordered (by inclusion) family of all subsets of X that are
SSFs of L. The family contains at least X , so it is nonempty. By Zorn’s lemma, if every nonempty
chain (that is, a totally ordered subset of the family)C has a lower bound in this family, then the family
has a minimal element, which is then an inclusion-minimal SSF of L. We show that the intersection
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I of the sets in C is an SSF of L, and therefore it is the required lower bound. For any u, v ∈ L such
that u 6= v and for any Y ∈ C, there exists y ∈ Y such that |u|y 6= |v|y. Then y must be a factor of u
or v, so if u and v are fixed, then there are only finitely many possibilities for y. Thus at least one of
the words y is in all sets Y and therefore also in I . This shows that I is an SSF of L. This completes
the proof. ut

The next lemma shows a connection between SSFs and k-abelian equivalence.

Lemma 3.3. Let L be a language.

1. Let k ∈ Z+. The language Σ≤k is an SSF of L if and only if the words in L are pairwise
k-abelian nonequivalent.

2. The language L has a finite SSF if and only if there exists a number k such that the words in L
are pairwise k-abelian nonequivalent.

Proof:
The first claim follows directly from the definitions of an SSF and k-abelian equivalence. The “only
if” and “if” directions of the second claim can be proved as follows: If a finite set X is an SSF of L,
then X ⊆ Σ≤k for some k, and then the words in L are pairwise k-abelian nonequivalent. Conversely,
if the words in L are pairwise k-abelian nonequivalent, then Σ≤k is an SSF of L. ut

Note that the condition “the words in L are pairwise k-abelian nonequivalent” can be equivalently
expressed as “PL = Pk

L”. This means that Lemma 3.3 implies the equivalence of Questions 1 and 3.

Example 3.4. Let w, x, y, z ∈ {a, b}∗ and L = {awa, axb, bya, bzb}. No two words in L have both a
common prefix and a common suffix of length one, so the words are pairwise 2-abelian nonequivalent.
By the first claim of Lemma 3.3, {a, b}≤2 is an SSF of L. This SSF is not size-minimal (by the first
claim of Lemma 3.2, L has an SSF of size three), but it has the advantage of consisting of very short
words and not depending on w, x, y, z. Actually, also {ε, a, aa, ab, ba} is an SSF of L. This follows
from the fact that |u|b = |u|ε−|u|a−1 and |u|bb = |u|ε−|u|aa−|u|ab−|u|ba−2 for all u ∈ {a, b}∗.

Example 3.5. In a list of about 140 000 English words (found in the SCOWL database1), there are
no 4-abelian equivalent words. Therefore, by Lemma 3.3, Σ≤4 is an SSF of the language formed
by these words (the alphabet Σ here contains the 26 letters from a to z and also many accented
letters and other symbols). The only pairs of 3-abelian equivalent words are reregister, registerer and
reregisters, registerers. The number of other pairs of 2-abelian equivalent words is also small enough

1http://wordlist.aspell.net/
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that they can be listed here:

indenter, intender indenters, intenders

pathophysiologic, physiopathologic pathophysiological, physiopathological

pathophysiology, physiopathology pathophysiologies, physiopathologies

tamara, tarama tamaras, taramas

tantarara, tarantara tantararas, tarantaras

tantaras, tarantas

This means that most words of length 4 and 3 are not needed in the SSF. For example, the set Σ≤2 ∪
{rere, hop, ind, tan, tar} is an SSF of the language. We did not try to find a minimal SSF.

In the next lemma, we consider whether the properties of having or not having a finite SSF are
preserved under the rational operations union, concatenation and Kleene star.

Lemma 3.6. Let K and L be languages.

1. If L has a finite SSF and F is a finite language, then L ∪ F has a finite SSF.

2. If L does not have a finite SSF, then L ∪K does not have a finite SSF.

3. If L has a finite SSF and w is a word, then wL and Lw have finite SSFs.

4. If L does not have a finite SSF and K 6= ∅, then neither KL nor LK have finite SSFs.

5. L∗ has a finite SSF if and only if there exists a word w such that L ⊆ w∗.

6. If the symmetric difference of K and L is finite, then either both or neither have a finite SSF.

Proof:

1. Let X be a finite SSF of L. Let u, v ∈ L ∪ F and u 6= v. First, if u, v ∈ L, then |u|x 6= |v|x
for some x ∈ X . Second, if u ∈ F and |u| = |v|, then |u|u 6= |v|u. Finally, if |u| 6= |v|, then
|u|ε 6= |v|ε. Thus X ∪ F ∪ {ε} is an SSF of L ∪ F .

2. If a finite set is an SSF of L ∪K, then it is also an SSF of L.

3. Let wL have no finite SSF. Let k ∈ Z+ and k′ = k + |w|. By Lemma 3.3, there exist two
k′-abelian equivalent words wu,wv ∈ wL. Then u and v have a common prefix p of length
k − 1. For all x ∈ Σk, with the help of Lemma 2.5, we get

|u|x = |wu|x − |wp|x = |wv|x − |wp|x = |v|x,

so u ≡k v. We have shown that for all k ≥ 1, there exist two k-abelian equivalent words in L.
By Lemma 3.3, L does not have a finite SSF. The case of Lw is symmetric.
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4. Let L have no finite SSF and let w ∈ K. Let k ∈ Z+. By Lemma 3.3, there exist two k-abelian
equivalent words u, v ∈ L, and then wu,wv ∈ KL are k-abelian equivalent. We have shown
that for all k ≥ 1, there exist two k-abelian equivalent words in KL. By Lemma 3.3, KL does
not have a finite SSF. The case of LK is symmetric.

5. If L ⊆ w∗, then {w} is an SSF of L. If there does not exist w such that L ⊆ w∗, then there exist
u, v ∈ L such that uv 6= vu. For all k ∈ Z+, the words ukvuk−1, uk−1vuk ∈ L∗ are distinct.
They have the same prefix of length k − 1. If u1 is the prefix and u2 is the suffix of uk−1 of
length k − 1, then, with the help of Lemma 2.5, we get

|ukvuk−1|x = |uk|x + |u2vu1|x + |uk−1|x = |uk−1|x + |u2vu1|x + |uk|x = |uk−1vuk|x

for all x ∈ Σk, so ukvuk−1 ≡k u
k−1vuk. We have shown that for all k ≥ 1, there exist two

k-abelian equivalent words in L∗. By Lemma 3.3, L∗ does not have a finite SSF.

6. If K has a finite SSF, then so does K ∩L. If LrK is finite, then also L has a finite SSF by the
first claim of this lemma. Similarly, if L has a finite SSF and K r L is finite, then also K has a
finite SSF.

ut

Example 3.7. We give an example showing that the property of having a finite SSF is not always
preserved by union and concatenation. Let L = {akbak−1 | k ∈ Z+}. Then both L and Laa have
the finite SSF {ε}. On the other hand, L{ε, aa} = L ∪ Laa contains the k-abelian equivalent words
akbak−1 and ak−1bak for all k ≥ 2, so by Lemma 3.3, L∪Laa does not have a finite SSF even though
both L and Laa do have a finite SSF, and L{ε, aa} does not have a finite SSF even though both L and
{ε, aa} do have a finite SSF.

4. Infinite words

In this section, we give an answer to Question 2.

Theorem 4.1. Let w be an infinite word. There exists k ∈ Z+ such that Pw = Pk
w if and only if w is

ultimately periodic.

Proof:
First, let w be ultimately periodic. Then we can write w = uvω, where v is primitive and is not a
suffix of u. Let k = |uv| + 1 and let x, y be k-abelian equivalent factors of w. If x and y are shorter
than uv, then x = y. Otherwise x and y have a common prefix of length k − 1 = |uv| and we can
write x = u′v′x′ and y = u′v′y′, where |u′| = |u| and |v′| = |v|. Here v′ is a factor of vω, so it must
be a conjugate of v, and it is followed by (v′)ω. Thus x′ and y′ are prefixes of (v′)ω and they are of
the same length, so x′ = y′ and thus x = y. We have proved that no two factors of w are k-abelian
equivalent. It follows that Pw = Pk

w.
Second, let w be aperiodic and let k ≥ 2 be arbitrary. Let n = Pw(k − 1) + 1. There must exist

a word u of length (k − 1)n that occurs infinitely many times in w as a factor. We can write u =
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x1 · · ·xn, where x1, . . . , xn ∈ Σk−1. By the definition of n, there exist two indices i, j ∈ {1, . . . , n}
such that xi = xj . Let i < j, x = xi = xj and y = xi+1 · · ·xj−1. Then xyx is a factor of u and thus
occurs infinitely many times in w as a factor. Therefore we can write w = z0xyxz1xyxz2xyx · · ·
for some infinite sequence of words z0, z1, z2, . . . . If the words xy and xzh have the same primitive
root p for all h ∈ Z+, then w = z0p

ω, which contradicts the aperiodicity of w. Thus there exists h
such that ρ(xy) 6= ρ(xzh). Then xyxzh 6= xzhxy and thus xyxzhx 6= xzhxyx. On the other hand,
xyxzhx and xzhxyx are k-abelian equivalent because they have the same prefix x of length k−1 and,
by Lemma 2.5,

|xyxzhx|t = |xyx|t + |xzhx|t = |xzhx|t + |xyx|t = |xzhxyx|t

for all t ∈ Σk. Moreover, xyxzhx and xzhxyx are factors of w. It follows that Pw 6= Pk
w. ut

Corollary 4.2. The set of factors of an infinite word w has a finite SSF if and only if w is ultimately
periodic.

Proof:
Follows from Theorem 4.1 and Lemma 3.3. ut

Now we know that if w is aperiodic, then Fact(w) does not have a finite SSF. We could try to find
an SSF that is infinite but small in some sense. A natural way to measure the smallness of an infinite
language would be to use the cumulative growth function. Trivially, Fact(w) has an SSF L such that
PL(n) ≤ nPw(n) for all n, namely, the set Fact(w) r {ε}. In the next two theorems, we prove that
the linear factor n can be replaced by a logarithmic one, and for many families of infinite words, it can
be replaced by a constant. The function log means the binary logarithm.

Theorem 4.3. Let w be an aperiodic infinite word. Then Fact(w) has an SSF L such that

PL(n) =

blog(n+1)c∑
i=1

Pw(2i − 1) +

blognc∑
i=1

Pw(2i) (1)

≤ 2 log(n+ 1) · Pw(n) (2)

for all n ≥ 1.

Proof:
Let

L =

∞⋃
i=1

(Fact2i−1(w) ∪ Fact2i(w)) .

Then

L ∩ Σ≤n =

blog(n+1)c⋃
i=1

Fact2i−1(w) ∪
blognc⋃
i=1

Fact2i(w),

so (1) is true. The inequality (2) follows from Pw being strictly increasing. It remains to be shown
that L is an SSF of Fact(w). Let u, v ∈ Fact(w) be distinct words. If |u| 6= |v| or |u| = |v| ≤ 1,
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then |u|a 6= |v|a for some letter a ∈ L. If |u| = |v| ≥ 2, let k = 2blog(|u|)c, so k ≤ |u| = |v| < 2k.
By Theorem 2.4, u and v are not k-abelian equivalent. Also by Theorem 2.4, there exists a word
x ∈ Σk ∪ Σk−1 such that |u|x 6= |v|x. Then x is a factor of at least one of u and v, and thus
x ∈ Fact(w). From |x| ∈ {2blog(|u|)c, 2blog(|u|)c − 1} it follows that x ∈ L. This shows that L is an
SSF of Fact(w). ut

Theorem 4.4. Let f : Z+ → R+ be an increasing function and w an infinite aperiodic word such that
Pw(n) ≤ f(n) for all n ≥ 1. If there exists a constant C > 1 such that f(2n) ≥ Cf(n) for all n ≥ 1,
then Fact(w) has an SSF L such that

PL(n) ≤ 3C − 1

C − 1
· f(n)

for all n ≥ 1.

Proof:
Let m = blog nc. From f(2k) ≥ Cf(k) for all k it follows that f(2m) ≥ Cm−if(2i) for all i ≤ m.
By Theorem 4.3, Fact(w) has an SSF L such that (1) holds, and then

PL(n) ≤ Pw(n) +
m∑
i=1

Pw(2i − 1) +
m∑
i=1

Pw(2i)

≤ f(n) + 2
m∑
i=1

f(2i)

≤ f(n) + 2
m∑
i=1

Ci−mf(2m)

≤ f(n) + 2f(n)
∞∑
i=0

C−i =
3C − 1

C − 1
· f(n).

The claim follows. ut

For Sturmian words, we get the following result.

Theorem 4.5. Let w be a Sturmian word. Then Fact(w) has an SSF L such that

PL(n) ≤ 4n+ log n− 2

for all n ≥ 1.

Proof:
By Theorem 4.3, Fact(w) has an SSF L such that (1) holds, and for a Sturmian word w, Pw(m) =
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m+ 1 for all m, so

PL(n) =

blog(n+1)c∑
i=1

Pw(2i − 1) +

blognc∑
i=1

Pw(2i)

=

blog(n+1)c∑
i=1

2i +

blognc∑
i=1

(2i + 1)

= 2blog(n+1)c+1 − 2 + 2blognc+1 − 2 + blog nc
≤ 2(n+ 1)− 2 + 2n− 2 + log n = 4n+ log n− 2.

The claim follows. ut

In the previous theorems, we have proved upper bounds forPL(n). This leads to several questions:
Can we significantly improve these bounds? Can we prove good lower bounds? Can we prove good
bounds for PL(n)? For which infinite words can we find an SSF L such that PL(n) = O(1)?

5. Regular languages

In this section, we give an answer to Question 1 for regular languages.

Lemma 5.1. If a language L has a subset of the form xw∗yw∗z for some words w, x, y, z such that
wy 6= yw, then L does not have a finite SSF.

Proof:
For all k ∈ Z+, the words xwkywk−1z and xwk−1ywkz are distinct. They have the same prefix of
length k − 1. If w1 is the prefix and w2 is the suffix of wk−1 of length k − 1, then, by Lemma 2.5,

|xwkywk−1z|t = |xw1|t + |wk|t + |w2yw1|t + |wk−1|t + |w2z|t = |xwk−1ywkz|t

for all t ∈ Σk, so xwkywk−1z ≡k xw
k−1ywkz. We have shown that for all k ≥ 1, there exist two

k-abelian equivalent words in L. By Lemma 3.3, L does not have a finite SSF. ut

A language L is bounded if it is a subset of a language of the form

v∗1 · · · v∗n,

where v1, . . . , vn are words. It was proved by Ginsburg and Spanier [19] that a regular language is
bounded if and only if it is a finite union of languages of the form

u0v
∗
1u1 · · · v∗nun, (3)

where u0, . . . , un are words and v1, . . . , vn are nonempty words.

Lemma 5.2. Every regular language is bounded or has a subset of the form xw∗yw∗z for some words
w, x, y, z such that wy 6= yw.
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Proof:
The proof is by induction. Every finite language is bounded. We assume that A and B are regular
languages that have the claimed property and prove that also A ∪ B, AB and A∗ have the claimed
property.

First, we consider A ∪ B. If both A and B are bounded, then so is A ∪ B by the characterization
of Ginsburg and Spanier. If at least one of A and B has a subset of the form xw∗yw∗z for some words
w, x, y, z such that wy 6= yw, then A ∪B has this same subset.

Next, we consider AB. If both A and B are bounded, or if one of them is not bounded but the
other one is empty, then AB is bounded by the definition of bounded languages. If A and B are
nonempty and at least one of them has a subset of the form xw∗yw∗z for some words w, x, y, z such
that wy 6= yw, then AB has a subset of the same form with a different x or z.

Finally, we consider A∗. If A ⊆ u∗ for some word u, then A∗ ⊆ u∗ is bounded. If A is not a
subset of u∗ for any word u, then there exist w, y ∈ A such that wy 6= yw, and A∗ has w∗yw∗ as a
subset. ut

By Lemmas 5.1 and 5.2, if a regular language is not bounded, then it does not have a finite SSF.
Thus we can concentrate on bounded regular languages. We continue with a technical lemma.

Lemma 5.3. Let L be a bounded regular language. There exist integers n, k ≥ 0 and a finite set of
Lyndon words P such that the following are satisfied:

1. If p, q ∈ P , p 6= q, and l,m ≥ 0, then pl and qm do not have a common factor of length n.

2. If u ∈ L and p ∈ P , then either there is at most one maximal p≥n-occurrence in u or L has a
subset of the form x(pm)∗y(pm)∗z, where py 6= yp and m ≥ 1.

3. If u ∈ L and x is a factor of u of length at least k, then x has a factor pn+1 for some p ∈ P .

Proof:
If L is finite, then the lemma is basically trivial. For example, we can let P = ∅ and n = k =
max{|w| | w ∈ L}+ 1. If L is infinite, then, by the characterization of Ginsburg and Spanier, we can
write

L =
s⋃

i=1

ui0

ri∏
j=1

v∗ijuij ,

where s ≥ 1 and r1, . . . , rs ≥ 0 are numbers, ri ≥ 1 for at least one i, all the uij are words, and all
the vij are nonempty words. We are going to prove that the three conditions are satisfied for P being
the set of Lyndon roots of the words vij and

n = 2 ·max
{
|ui0

ri∏
j=1

vijuij |
∣∣∣ i ∈ {1, . . . , s}},

k = max
{
|ui0

ri∏
j=1

vn+2
ij uij |

∣∣∣ i ∈ {1, . . . , s}}.
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First, we prove Condition 1. If p, q ∈ P , l,m ≥ 0, and pl and qm have a common factor of length
|pq|, then p = q by Lemma 2.2. Clearly n ≥ |pq|, so Condition 1 is satisfied.

Next, we prove Condition 2. This is the most complicated part of the proof. Let u ∈ L and p ∈ P .
There are numbers i,m1, . . . ,mri such that

u = ui0

ri∏
j=1

v
mj

ij uij .

Let (w1, p
N , w2) be a maximal p≥n-occurrence in u. If there does not exist an index J such that

(w1, p
N , w2) and the occurrence

(
ui0

J−1∏
j=1

v
mj

ij uij , v
mJ
iJ , uiJ

ri∏
j=J+1

v
mj

ij uij

)
(4)

have an overlap of length at least |pviJ |, then

|pN | <
ri∑
j=0

|uij |+
ri∑
j=1

|pvij | ≤
n

2
+ ri|p| ≤

n

2
+
n

2
· |p| ≤ n|p|,

which is a contradiction. So there exists a number J such that (w1, p
N , w2) and (4) have an overlap

of length at least |pviJ |, and then p = λ(viJ) by Lemma 2.2. We can write vmJ
iJ = p1p

Mp2, where p1
is a proper suffix of p, p2 is a proper prefix of p, and M ≥ 1. Then the occurrences (w1, p

N , w2) and

(
ui0

( J−1∏
j=1

v
mj

ij uij

)
p1, p

M , p2uiJ

ri∏
j=J+1

v
mj

ij uij

)
(5)

have an overlap of length at least |p|, so (5) is contained in (w1, p
N , w2) by Lemma 2.3. If there is

another maximal p≥n-occurrence (w′1, p
N ′
, w′2) in u, then similarly there exists a number J ′ such that

p = λ(viJ ′), vm
′
J

iJ ′ = p′1p
M ′
p′2, where p′1 is a proper suffix of p, p′2 is a proper prefix of p, and M ′ ≥ 1,

and the occurrence (
ui0

( J ′−1∏
j=1

v
mj

ij uij

)
p′1, p

M ′
, p′2uiJ ′

ri∏
j=J ′+1

v
mj

ij uij

)
(6)

is contained in the occurrence (w′1, p
N ′
, w′2). It must be J 6= J ′, because otherwise (5) and (6) would

be the same, and then the maximal occurrences (w1, p
N , w2) and (w′1, p

N ′
, w′2) would be the same by

Lemma 2.3. By symmetry, we can assume J < J ′. Then L has a subset of the form x(pl1)∗y(pl2)∗z,
where

y = p2uiJ

( J ′−1∏
j=J+1

v
mj

ij uij

)
p′1,
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and then it also has the subset x(pm)∗y(pm)∗z, where m = l1l2. Here y /∈ p∗ and thus py 6= yp,
because otherwise (5) and (6) would be contained in the p+-occurrence

(
ui0

( J−1∏
j=1

v
mj

ij uij

)
p1, p

MypM
′
, p′2uiJ ′

ri∏
j=J ′+1

v
mj

ij uij

)
,

and then the maximal occurrences (w1, p
N , w2) and (w′1, p

N ′
, w′2) would be the same by Lemma 2.3.

Finally, we prove Condition 3. Let u ∈ L. There are numbers i,m1, . . . ,mri such that

u = ui0

ri∏
j=1

v
mj

ij uij .

Let x be a factor of u of length at least k. If it does not have a common factor of length at least |vn+2
ij |

with the factor vmj

ij for any j, then

|x| <
ri∑
j=0

|uij |+
ri∑
j=1

|vn+2
ij | ≤ k,

which is a contradiction. So there exists a number j such that x and vmj

ij have a common factor of
length at least |vn+2

ij |, and this common factor necessarily has a λ(vij)
n+1-occurrence. ut

Now we are ready to prove our main theorem.

Theorem 5.4. A regular language L has a finite SSF if and only if L does not have a subset of the
form xw∗yw∗z for any words w, x, y, z such that wy 6= yw.

Proof:
The “only if” direction follows from Lemma 5.1. To prove the “if” direction, let n, k, P be as in
Lemma 5.3 (L is bounded by Lemma 5.2). Let u, v ∈ L be k-abelian equivalent. We are going to
show that u = v. This proves the theorem by Lemma 3.3. If |u| = |v| < k, then trivially u = v, so
we assume that |u| = |v| ≥ k.

Let Pj = {pi | p ∈ P, i ≥ j} for all j. Let the maximal Pn-occurrences in u be

(x1, p
m1
1 , x′1), . . . , (xr, p

mr
r , x′r), (7)

where p1, . . . , pr ∈ P . It follows from |u| ≥ k and Condition 3 of Lemma 5.3 that r ≥ 1. We
can assume that the occurrences have been ordered so that |x1| ≤ · · · ≤ |xr|. By Condition 2 of
Lemma 5.3, the words p1, . . . , pr are pairwise distinct. All Pn-occurrences in u are contained in
one of the maximal occurrences (7). By Condition 1 of Lemma 5.3, pn cannot be a factor of pmj

j if
p ∈ P r {pj}, so if p ∈ P r {p1, . . . , pr}, then there are no p≥n-occurrences in u, and all p≥ni -
occurrences are (xip

l
i, p

j
i , p

mi−j−l
i x′i) for j ∈ {n, . . . ,mi} and l ∈ {0, . . . ,mi − j}. In particular,

|u|pni = mi − n+ 1.
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Similarly, let the maximal Pn-occurrences in v be

(y1, q
n1
1 , y′1), . . . , (ys, q

ns
s , y′s),

where s ≥ 1 and q1, . . . , qs ∈ P . As above, we can assume that the occurrences have been ordered
so that |y1| ≤ · · · ≤ |ys|, and we can prove that the words q1, . . . , qs are pairwise distinct, pn cannot
be a factor of qnj

j if p ∈ P r {qj}, and if p ∈ P r {q1, . . . , qs}, then there are no p≥n-occurrences

in v, all q≥ni -occurrences are (yiq
l
i, q

j
i , q

ni−j−l
i y′i) for j ∈ {n, . . . , ni} and l ∈ {0, . . . , ni − j}, and

|v|qni = ni − n+ 1.
If p ∈ P , then |pn| < k by Condition 3 of Lemma 5.3, and then |u|pn = |v|pn because u ≡k v.

It follows that r = s and {p1, . . . , pr} = {q1, . . . , qs}. We have seen that |u|pni = mi − n + 1 and
|v|qnj = nj − n+ 1, so if pi = qj , then mi = nj .

We prove by induction that (xi, pi,mi) = (yi, qi, ni) for all i ∈ {1, . . . , r}. First, we prove
the case i = 1. The words u and v have prefixes x1pn1 and y1qn1 , respectively. There is only one
Pn-occurrence and no Pn+1-occurrences in x1pn1 . Similarly, there is only one Pn-occurrence and no
Pn+1-occurrences in y1qn1 . By Condition 3 of Lemma 5.3, |x1pn1 | < k and |y1qn1 | < k. Because u
and v are k-abelian equivalent, they have the same prefix of length k − 1, and thus one of x1pn1 and
y1q

n
1 is a prefix of the other. If, say, x1pn1 is a prefix of y1qn1 , then y1qn1 has an occurrence (x1, p

n
1 , z)

for some word z, and this must be the unique Pn-occurrence (y1, q
n
1 , ε). It follows that x1 = y1 and

p1 = q1, and then also m1 = n1.
Next, we assume that (xi, pi,mi) = (yi, qi, ni) for some i ∈ {1, . . . , r − 1} and prove that

(xi+1, pi+1,mi+1) = (yi+1, qi+1, ni+1). Let

xi+1 = xip
mi−n
i x′′i , yi+1 = yiq

ni−n
i y′′i = xip

mi−n
i y′′i .

The unique shortest factor in u beginning with pni and ending with pn for some p ∈ P r {pi} is
the factor x′′i p

n
i+1 with the unique occurrence (xip

mi−n
i , x′′i p

n
i+1, p

mi+1−n
i+1 x′i+1). Similarly, the unique

shortest factor in v beginning with pni and ending with pn for some p ∈ P r {pi} is the factor y′′i q
n
i+1

with the unique occurrence (xip
mi−n
i , y′′i q

n
i+1, q

ni+1−n
i+1 y′i+1). There are no Pn+1-occurrences in these

factors, so they are of length less than k by Condition 3 of Lemma 5.3, and they must be equal because
u ≡k v. It follows that pi+1 = qi+1, x′′i = y′′i , and xi+1 = yi+1, and then also mi+1 = ni+1.

It follows by induction that xrpmr
r = yrq

nr
r . Because |u| = |v|, it must be |x′r| = |y′r|. Because

x′r does not have any Pn+1-occurrences, |x′r| < k by Condition 3 of Lemma 5.3. Because u and v
are k-abelian equivalent, they have the same suffix of length k − 1, so x′r = y′r. Thus u = v. This
completes the proof. ut

Theorem 5.4 is easy to state, but it is not immediately clear what the regular languages without
a subset of the specified form look like. If we are given a bounded regular language as a union of
languages of the form (3), then it is actually very easy to check whether it has a subset of the specified
form, although the formulation of this result, given in the next theorem, is more complicated than
Theorem 5.4.
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Theorem 5.5. Let

L =

s⋃
i=1

ui0

ri∏
j=1

v∗ijuij ,

where s ≥ 1 and r1, . . . , rs ≥ 0 are numbers, all the uij are words, and all the vij are nonempty words.
The language L does not have a finite SSF if and only if at least one of the following conditions is
true:

1. There exist indices i, j1, j2, j3 such that j1 < j2 < j3 and λ(vij1) = λ(vij3) 6= λ(vij2).

2. There exist indices i, j such that λ(vij) = λ(vi,j+1) and ρ(vij)uij 6= uijρ(vi,j+1).

Proof:
First, we assume that the first condition is true. Let w = λ(vij1). Then L has a subset

x(wk)∗y1v
∗
ij2y2(w

k)∗z

for some words x, y1, y2, z and number k ≥ 1. By Lemma 2.2, a power of vij2 and a power of w
cannot have a common factor of length |vij2w|. This means that if n is large enough, then y1vnij2y2
cannot commute with wk. Thus L does not have a finite SSF by Theorem 5.4.

Then, we assume that the second condition is true. By λ(vij) = λ(vi,j+1), there exist words p, q
such that ρ(vij) = pq and ρ(vi,j+1) = qp. Then L has a subset

x((pq)k)∗uijq((pq)
k)∗z

for some words x, z and number k ≥ 1. By ρ(vij)uij 6= uijρ(vi,j+1), pquijq 6= uijqpq. Thus L does
not have a finite SSF by Theorem 5.4.

Finally, we assume that L does not have a finite SSF. By Theorem 5.4, L has a subset of the form
xw∗yw∗z, where wy 6= yw. There exists an index i such that for infinitely many n,

xwnywnz ∈ ui0
ri∏
j=1

v∗ijuij .

Let M = max{|vij | | j ∈ {1, . . . , ri}}. If N is so large that

|wN | ≥ ri(M + |w|) +

ri∑
j=0

|uij |,

and if

xwNywNz = ui0

ri∏
j=1

v
mj

ij uij ,

then for some numbers k, l, the occurrences (x,wN , ywNz) and (xwNy, wN , z) must have overlaps
of length at least M + |w| with the occurrences

(ui0

k−1∏
j=1

v
mj

ij uij , v
mk
ik , uik

ri∏
j=k+1

v
mj

ij uij), (ui0

l−1∏
j=1

v
mj

ij uij , v
ml
il , uil

ri∏
j=l+1

v
mj

ij uij),
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respectively. By Lemma 2.2, λ(w) = λ(vik) = λ(vil). If the first condition from the statement of
Theorem 5.5 is false, then λ(w) = λ(vij) for all j ∈ {k, . . . , l}. Let

W =
( l−1∏

j=k

v
mj

ij uij

)
vml
il , U =

l−1∏
j=k

uij ,

and let vmj

ij = ρ(vij)
nj for all j. If also the second condition is false, then

ρ(vij)
nuij = uijρ(vi,j+1)

n

for all j ∈ {k, . . . , l − 1} and n ≥ 0, and therefore

ρ(vik)nk+···+nlU = W = Uρ(vil)
nk+···+nl .

It follows that there exist words p and q such that ρ(vik) = pq, ρ(vil) = qp and U ∈ (pq)∗p,
so W is a factor of a power of pq, and therefore a factor of a power of ρ(w). The occurrence
(xwN−1, wyw,wN−1z) is contained in the occurrence

(ui0

k−1∏
j=1

v
mj

ij uij ,W, uil

ri∏
j=l+1

v
mj

ij uij),

so ρ(w)yρ(w) is a factor of W , and therefore a factor of a power of ρ(w). It follows that y is a power
of ρ(w), which contradicts wy 6= yw. This contradiction shows that both conditions cannot be false.

ut

Example 5.6. The language a∗(abab)∗b∗a(ba)∗ satisfies the first condition of Theorem 5.5, because
λ(abab) = λ(ba) 6= λ(b). Thus the language does not have a finite SSF. Alternatively, this can be
seen by noticing that the language has a subset (abab)∗b(abab)∗a and using Theorem 5.4.

The language a∗(abab)∗ba(ba)∗ satisfies the second condition of Theorem 5.5, because λ(abab) =
λ(ba) and ρ(abab)ba 6= baρ(ba). Thus the language does not have a finite SSF. Alternatively, this can
be seen by noticing that also this language has the subset (abab)∗b(abab)∗a.

The language a∗(abab)∗aba(ba)∗ does not satisfy either of the two conditions of Theorem 5.5, so
it has a finite SSF.

6. Conclusion

In this article, we have defined and studied separating sets of factors. In particular, we have considered
the question of whether a given language has a finite SSF. We have answered this question for sets
of factors of infinite words and for regular languages. In the former case, we have also analyzed the
cumulative growth functions of infinite SSFs. We can ask the following questions:

• Given a language with a finite SSF, what is the minimal size of an SSF of this language? For
example, this question could be considered for Σn.

• Given a language with no finite SSF, how “small” can the (cumulative) growth function of an
SSF of this language be? For example, this question could be considered for Σ∗, or for sets of
factors of infinite words. More specific questions were mentioned at the end of Section 4.
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