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Abstract

We prove that if the equality of words xku = u1x
k
1 · · ·unxkn holds for three

positive values of k, then it holds for all values of k. As a consequence, if
xk = xk1 · · ·xkn holds for three positive values of k, then the words x, x1, . . . , xn
are powers of a common word. The most important method in our proofs is to
assign numerical values to the letters, and then study the sums of the letters of
words and their prefixes.
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1. Introduction

We say that words x0, . . . , xn commute if xixj = xjxi for all i, j ∈ {0, . . . , n}.
It is well-known that words commute if and only if they are powers of a common
word. It is also known that if two words satisfy a nontrivial relation, then they
are powers of a common word, and more generally, if n words satisfy a nontrivial
relation, then they can be written as products of n− 1 words. This is known as
the defect theorem, see [7] for a survey.

One of the early results on word equations is the result of Lyndon and
Schützenberger [15] that if xk = ymzn for some words x, y, z and numbers
k,m, n ≥ 2, then x, y, z commute. Many generalizations have been studied,
see, for example, [14, 22, 2]. We are interested in the generalizations where the
right-hand side can have more than two powers, but all exponents are equal
(here k ≥ 1):

xk0 = xk1 · · ·xkn. (1)

We are also interested in more general equalities of the form

u0x
k
1u1 · · ·xkmum = v0y

k
1v1 · · · yknvn. (2)

In particular, we are interested in cases where (1) or (2) holds for many values
of k at the same time.

Email address: amsaar@utu.fi (Aleksi Saarela)

Preprint submitted to Elsevier December 20, 2018



Let us mention some connections and applications of (1) and (2). A subset
K of a language L is called its test set if, for all morphisms f and g, either f(x) 6=
g(x) for some x ∈ K or f(x) = g(x) for all x ∈ L. This means that to check
whether f and g agree on L, it is sufficient to check whether they agree on K.
There are connections between test sets and the above equalities, as explained
in [10]. The equalities also come up when studying pumping properties of formal
languages. They are used, for example, in the study of transducers [3, 5]. The
equalities (1) are related to the construction of large independent systems of
word equations [12, 18]. Finally, there is a connection between Sturmian words
and (1) for k = 1, 2 [17].

The main question about the equalities (1) is when do they imply that
x0, . . . , xn commute. Appel and Djorup [1] proved that if k = n in (1), then
the words x0, . . . , xn must commute. Their result was generalized by Harju and
Nowotka [8] for certain equalities which have many different exponents k1, k2, . . .
instead of just one exponent k. There are many examples of words x0, . . . , xn
such that xixj 6= xjxi for some i, j, but (1) holds for two different values of k.
For instance, (ababa)k = (ab)kak(ba)k for k ∈ {1, 2}. No such examples were
found for three different values of k, which led to the following question.

Question 1.1. If x0, . . . , xn are words and k1, k2, k3 ≥ 1 are different numbers
such that (1) holds for k ∈ {k1, k2, k3}, then do x0, . . . , xn necessarily commute?

In the case {k1, k2, k3} = {1, 2, 3}, the question appeared in an article by
Hakala and Kortelainen [6], a positive answer was explicitly conjectured by
Plandowski [18], and a prize for a proof was offered by Holub in 20091. The
case where one of k1, k2, k3 is 1 was asked in [9], and a positive answer in the
case k1, k2, k3 ≥ 2 was proved in [10] by Holub.

A positive answer to the general version of Question 1.1 was finally presented
at the conference STACS 2017 [20]. This article is an extended journal version
of that conference paper with more general results. Namely, we consider (2)
in the case where m = 1 and u0 is empty (the case where u1 is empty is of
course symmetric). We prove that in this case (2) holds either for at most two
positive values of k or for all k. A positive answer to Question 1.1 follows as
a consequence. The basic idea is to assign numerical values to the letters in a
specific way (so that the sum of the letters of x1 is zero), and then study the
sums of the letters of words and their prefixes. The ideas have already been
used to analyze other kinds of problems on word equations as well [16, 21].

We conclude the introduction with a short description of the similarities and
differences between the conference version and the journal version. Section 2 is
mostly copied from [20], although Lemma 2.2 is stronger than the corresponding
result in [20]. The underlying structure of the main proof (which is divided into
several lemmas) is roughly similar, but in this article we need some additional
considerations and more complicated arguments. In particular, Section 4 and
all uses of the polynomials Da(w) are entirely new.

1http://www.karlin.mff.cuni.cz/~holub/soubory/prizeproblem.pdf
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2. Preliminaries

Let Γ be an alphabet. We can assume that Γ is a subset of R. This allows
us to define Σ(w) to be the sum of the letters of a word w ∈ Γ∗, that is, if
w = a1 · · · an and a1, . . . , an ∈ Γ, then Σ(w) = a1 + · · ·+ an. The mapping Σ is
a morphism from the free monoid Γ∗ to the additive monoid R. Words w such
that Σ(w) = 0 are called zero-sum words.

The notation a1 · · · an of course means the word consisting of the letters
a1, . . . , an and not a product of numbers. When we actually want to compute
the product of two numbers, it should be clear from context. If w1, . . . , wn are
words, we can also use the notation

n∏
i=1

wi = w1 · · ·wn

for their concatenation.
Whenever the symbol Γ appears in this article, it is always used to denote

an alphabet. Occasionally we use other alphabets as well. All of them can be
assumed to be subsets of R. Alphabets are also assumed to be finite.

Let a1, . . . , ak ∈ Γ. The prefix sum word of w = a1 · · · ak is the word
psw(w) = b1 · · · bk, where bi = Σ(a1 · · · ai) for all i. Of course, psw(w) is usually
not a word over Γ, but over some other alphabet. The word psw(w) has the
same length as w and the last letter is Σ(w).

The mapping psw is injective. It is not a morphism, but we can give a simple
formula for the prefix sum word of a product by using the notation pswr(w) =
c1 · · · ck, where r ∈ R and ci = bi + r for all i. Then, for w1, . . . , wn ∈ Γ∗,

psw(w1 · · ·wn) =

n∏
i=1

pswΣ(w1···wi−1)(wi).

If w1, . . . , wn−1 are zero-sum, then we have the simpler formula

psw(w1 · · ·wn) =

n∏
i=1

psw(wi),

so in this case the mapping psw actually does behave like a morphism. For the
nth power of a word w, we get the formula

psw(wn) =

n∏
i=1

psw(i−1)Σ(w)(w).

If w is zero-sum, then we have psw(wn) = psw(w)n.
Because letters are real numbers, there is a natural order relation for them.

The largest and smallest letters in a word w can be denoted by max(w) and
min(w), respectively. The length of w is denoted by |w|, and the number of
occurrences of a letter a in w is denoted by |w|a. If Γ = {a1, . . . , an} and a1 <
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· · · < an, then the Parikh vector of w ∈ Γ∗ is the vector Πw = (|w|a1 , . . . , |w|an).
The set of letters occurring in w is denoted by alph(w). The size of a set S is
denoted by |S|.

Example 2.1. Let Γ = {a, b, c} and w = bbcaacc, where a = 1, b = 2, and
c = −2. We have |w| = 6, max(w) = 2, min(w) = −2, and Πw = (3, 2, 2).
Because Σ(w) = 2+2−2+1+1−2−2 = 0, w is a zero-sum word. The prefix sum
word of w is psw(w) = 2423420, and max(psw(w)) = 4 and min(psw(w)) = 0.

When studying words from a combinatorial point of view, the choice of the
alphabet is arbitrary (except for the size of the alphabet). Therefore, we can
assign numerical values to the letters in any way we like, as long as no two
letters get the same value. The next lemma shows in a formal way that, given
any word u, the alphabet can be normalized so that u becomes a zero-sum word.

Lemma 2.2. Let u ∈ Γ∗. There exists an alphabet ∆ and an isomorphism
h : Γ∗ → ∆∗ such that for all v ∈ Γ∗, h(v) is zero-sum if and only if Πv is a
scalar multiple of Πu.

Proof. If u is empty, it is sufficient to define h so that the image of every letter
is positive. Otherwise, let Γ = {a1, . . . , an} and a1 < · · · < an, and let aj be
the first letter of u and let J = {1, . . . , n}r {j}. We can view R as an infinite-
dimensional vector space over Q, and then there exists a linearly independent
set {bi | i ∈ J} ⊆ R. Let

bj = − 1

|u|aj
·
∑
i∈J
|u|aibi.

Because bj /∈ {bi | i ∈ J}, we can define an alphabet ∆ = {b1, . . . , bn} of size
n, and an isomorphism h : Γ∗ → ∆∗ such that h(ai) = bi for all i ∈ {1, . . . , n}.
Consider the linear mapping

σ : Qn → R, σ(q1, . . . , qn) = q1b1 + · · ·+ qnbn.

Then Im(σ) is the (n− 1)-dimensional subspace of R generated by the linearly
independent set {bi | i ∈ J}, so dim(Ker(σ)) = n − dim(Im(σ)) = 1 by the
rank-nullity theorem. By the definition of bj , σ(Πu) = 0, so Πu ∈ Ker(σ). The
one-dimensional space Ker(σ) is generated by each one of its nonzero elements,
in particular by Πu, so Ker(σ) consists of the scalar multiples of Πu. For all
v ∈ Γ∗, σ(Πv) = Σ(h(v)), so h(v) is zero-sum if and only if Πv is a scalar
multiple of Πu.

The above definitions have the following graphical interpretation, which is
not necessary for the proofs, but it might be helpful in understanding them
(at least it was helpful in inventing the proofs): Let w = a1 · · · ak. The word
psw(w) (or the word w depending on the point of view) can be represented by a
polygonal chain by starting at the origin, moving a1 units up and one unit to the
right, a2 units up and one unit to the right, and so on. If psw(w) = b1 · · · bk, then
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this curve is also obtained by connecting the points (0, 0), (1, b1), . . . , (k, bk). The
last point is (|w|,Σ(w)). See Figure 1 for an example. The biggest y-coordinate
is max(psw(w)) and the smallest y-coordinate is min(psw(w)), except that we
need to ignore the point (0, 0) and the points between (0, 0) and (1, b1). In
fact, we are really only interested in the points (1, b1), . . . , (k, bk), and the line
segments connecting them are just meant to make the drawings look better. The
word pswr(w) could be represented in a similar way by starting at the point
(0, r) instead of (0, 0). The curve of psw(uv) consists of the curve of psw(u)
followed by the curve of psw(v) translated in such a way that its starting point
matches the end point of the curve of psw(u).

•

•

•

•

•

•

•

•
(|w|,Σ(w))

max(psw(w))

min(psw(w))

Figure 1: Graphical representation of the word psw(w), where w = aaabbaa, a = 1, and
b = −2. We have |w| = 7, Σ(w) = 1, max(psw(w)) = 3, and min(psw(w)) = −1.

The graphical interpretation is similar to the relation between Dyck words
and Dyck paths, or the definition of Sturmian words as mechanical words. Rep-
resentations of words as paths (or paths as words) can also be used in discrete
geometry. This can, for example, lead to connections between word equations
and tilings of a plane, see [4] for a survey.

3. Numbers of occurrences of letters

In this paper, we frequently need to study words of the forms pswAk+B(x)
and pswAk+B(xk), where x is a word, A,B are numbers, and k is a positive
integer. In this section, we study how the number of occurrences of a letter
changes when k changes. Let us first describe the graphical representations of
these words to develop some geometric intuition, which could be used to give
alternative (somewhat informal) proofs of Lemmas 3.1 and 4.3.

The starting point of the curve of pswAk+B(x) is at height Ak +B and the
end point at height Ak+B+ Σ(x). When k grows, the curve remains the same,
except that it is translated vertically if A 6= 0: It moves up if A > 0 and down
if A < 0.

The starting point of the curve of pswAk+B(xk) is at height Ak+B and the
end point at height (A+ Σ(x))k +B. The curve consists of k translated copies
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of the curve of psw(x). If Σ(x) = 0, then all k copies are at the same level, if
Σ(x) > 0, then the last copy is the highest one, and if Σ(x) < 0, then the first
copy is the highest one. When k grows, the highest point on the curve moves
up if A > 0 or A+ Σ(x) > 0, it moves down if A < 0 and A+ Σ(x) < 0, and it
stays the same if max{A,A+ Σ(x)} = 0.

Let K ⊆ Z and let f : K → Z be a function. We use the following definitions,
most of which are standard:

1. f is constant if f(x) = f(y) for all x, y ∈ K.

2. f is positive if f(x) > 0 for all x ∈ K.

3. f is increasing if f(x) ≤ f(y) whenever x < y.

4. f is strictly increasing if f(x) < f(y) whenever x < y.

5. f is strictly decreasing if f(x) > f(y) whenever x < y.

6. f is affine if there exist numbers a, b such that f(x) = ax+b for all x ∈ K.

7. f is convex if (f(y) − f(x))/(y − x) ≤ (f(z) − f(x))/(z − x) whenever
x < y < z.

The following facts are direct consequences of the definitions:

1. Every constant function is affine and increasing.

2. Every affine function is convex.

3. The sum of increasing (affine, convex) functions is increasing (affine, con-
vex, respectively).

4. The sum of increasing functions is strictly increasing if at least one of the
functions is strictly increasing.

5. The sum of convex functions is not affine if at least one of the functions
is not affine.

The reason why we stated the definitions of affine and convex functions (and
why these concepts appear in the next lemma) is that later, in the proof of
Lemma 5.4, we show that certain two functions cannot be the same, because
one of them is affine and the other one is a sum of convex functions at least one
of which is not affine. We do not use convexity in any other way.

Lemma 3.1. Let x ∈ Γ+, A,B ∈ R, {α, β} = {0, 1}, K ⊆ Z+, |K| ≥ 3, a ∈ R.
Let A′ = A+αΣ(x) and M = max{max(pswAk+B(xαk+β)) | k ∈ K}. Consider
the function

φ : K → Z, φ(k) = |pswAk+B(xαk+β)|a.

(a) If A = A′ = 0 and φ is not the zero function, then either α = 0 and φ is
constant, or Σ(x) = 0 6= α and φ is positive, strictly increasing, and affine.

(b) If A = 0, A′ < 0, and a = M , then φ is constant.

(c) If A < 0, A′ = 0, and a = M , then φ is constant.

(d) If A < 0, A′ < 0, and a = M , then φ is convex but not affine.

(e) If max{A,A′} > 0 and a = M , then φ is convex but not affine.
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Proof. We have

pswAk+B(xαk+β) =

αk+β∏
i=1

pswAk+B+(i−1)Σ(x)(x)

and thus

φ(k) =

αk+β∑
i=1

|pswAk+B+(i−1)Σ(x)(x)|a (3)

and

max(pswAk+B(xαk+β))

= max(psw(x)) + max{Ak +B + (i− 1)Σ(x) | i ∈ {1, . . . , αk + β}}

= max(psw(x)) +

{
Ak +B if Σ(x) ≤ 0

A′k +B + (β − 1)Σ(x) if Σ(x) ≥ 0

for all k.

(a) Let A = A′ = 0. Then one of α and Σ(x) is zero. If α = 0, then φ is clearly
constant. If Σ(x) = 0 6= α, then φ(k) = (αk + β)|pswB(x)|a is either the
zero function (if |pswB(x)|a = 0) or positive, strictly increasing, and affine.

(b) Let A = 0 and A′ < 0. Then α = 1, Σ(x) < 0. For a fixed k, Ak+B + (i−
1)Σ(x) is strictly decreasing with respect to i, so if a = M , then only the first
term in the sum (3) can be positive, and therefore φ(k) = |pswAk+B(x)|a.
This is constant.

(c) Let A < 0 and A′ = 0. Then α = 1, Σ(x) > 0. For a fixed k, Ak +
B + (i − 1)Σ(x) is strictly increasing with respect to i, so if a = M , then
only the last term in the sum (3) can be positive, and therefore φ(k) =
|pswA′k+B+(β−1)Σ(x)(x)|a. This is constant.

(d) Let A < 0 and A′ < 0. Then max(pswAk+B(xαk+β)) is strictly decreasing
with respect to k, so if a = M , then φ(k) > 0 for k = min(K) and φ(k) = 0
otherwise, which makes φ convex and not affine.

(e) Let max{A,A′} > 0. Then max(pswAk+B(xαk+β)) is strictly increasing
with respect to k, so if a = M , then φ(k) > 0 for k = max(K) and φ(k) = 0
otherwise, which makes φ convex and not affine.

4. Distances between occurrences of letters

For a word w and a letter a, we need to consider distances between consec-
utive occurrences of a. We need to keep track of not just one of these distances
(e.g., the largest one), but all of them, and also how many times each distance
occurs. In other words, we need to consider the multiset of these distances. A
multiset {a1, . . . , an} of nonnegative integers can be conveniently encoded as a
polynomial Xa1 + · · ·+Xan ∈ Z[X]. This idea leads to the following definitions.
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If |w|a = n > 0, then there are unique words u0, . . . , un such that |ui|a = 0
for all i ∈ {0, . . . , n} and w = u0au1 . . . aun, and we define a polynomial in Z[X]
that encodes the distances between consecutive occurrences of a:

Da(w) =

n−1∑
i=1

X |ui|.

We also need to consider the lengths of the prefix u0 and the suffix un, so we
define two other polynomials:

Pa(w) = X |u0| and Sa(w) = X |un|.

We use the notation (Pa +Da + Sa)(w) = Pa(w) +Da(w) + Sa(w). If |w|a = 0,
then these polynomials are not defined.

Example 4.1. If w = abbaabbab, then Da(w) = 1 + 2X2, Pa(w) = 1, Sa(w) =
X.

In the next lemma, we see how the polynomials behave with respect to
concatenation.

Lemma 4.2. Let a be a letter and u0, . . . , un, v1, . . . , vn words such that |ui|a =
0 for all i ∈ {0, . . . , n} and |vi|a > 0 for all i ∈ {1, . . . , n}. Then

Da(u0v1u1 . . . vnun) =

n∑
i=1

Da(vi) +

n−1∑
i=1

Sa(vi)X
|ui|Pa(vi+1),

Pa(u0v1u1 . . . vnun) = X |u0|Pa(v1),

Sa(u0v1u1 . . . vnun) = Sa(vn)X |un|.

Proof. Follows directly from the definitions.

The next lemma is a counterpart of Lemma 3.1.

Lemma 4.3. Let x ∈ Γ+, A,B ∈ R, {α, β} = {0, 1}, a ∈ R. Let z(k) =
pswAk+B(xαk+β) for all k ∈ Z+. Let A′ = A+ αΣ(x).

(a) If A = A′ = 0 and |z(k)|a > 0 for some k ∈ Z+, then |z(k)|a > 0 for all
k ∈ Z+ and there exist f(X), g(X) ∈ Z[X], p, q ∈ Z≥0 such that for all
k ∈ Z+,

Da(z(k)) = kf(X) + g(X), Pa(z(k)) = Xp, Sa(z(k)) = Xq.

Moreover, if α = 0, then f(X) = 0.

(b) If A = 0, A′ < 0, and a = max(z(k)) for some k, then |z(k)|a > 0 for all
k ∈ Z+ and there exist g(X) ∈ Z[X], p, q ∈ Z≥0, r ∈ Z+ such that for all
k ∈ Z+,

Da(z(k)) = g(X), Pa(z(k)) = Xp, Sa(z(k)) = Xq+rk.
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(c) If A < 0, A′ = 0, and a = max(z(k)) for some k, then |z(k)|a > 0 for all
k ∈ Z+ and there exist g(X) ∈ Z[X], p, q ∈ Z≥0, r ∈ Z+ such that for all
k ∈ Z+,

Da(z(k)) = g(X), Pa(z(k)) = Xp+rk, Sa(z(k)) = Xq.

Proof. We have

z(k) =

αk+β∏
i=1

pswAk+B+(i−1)Σ(x)(x). (4)

(a) If A = A′ = 0, then one of α and Σ(x) is zero, and in both cases z(k) =
pswB(x)αk+β , so if |z(k)|a > 0 for some k ∈ Z+, then |z(k)|a > 0 for all
k ∈ Z+ and

Da(z(k)) = (αk + β)Da(pswB(x)) + (αk + β − 1)Pa(pswB(x))Sa(pswB(x)),

Pa(z(k)) = Pa(pswB(x)),

Sa(z(k)) = Sa(pswB(x)).

(b) If A = 0, A′ < 0, and a = max(z(k)) for some k, then, like in the proof of
Lemma 3.1 (b), we see that a can only occur in the first word of the product
(4), which is pswB(x). Thus |z(k)|a = |pswB(x)|a > 0 for all k ∈ Z+ and

Da(z(k)) = Da(pswB(x)),

Pa(z(k)) = Pa(pswB(x)),

Sa(z(k)) = Sa(pswB(x))X(αk+β−1)|x|.

(c) If A < 0, A′ = 0, and a = max(z(k)) for some k, then, like in the proof of
Lemma 3.1 (c), we see that a can only occur in the last word of the product
(4), which is pswB+(β−1)Σ(x)(x). Thus |z(k)|a = |pswB+(β−1)Σ(x)(x)|a > 0
for all k ∈ Z+ and

Da(z(k)) = Da(pswB+(β−1)Σ(x)(x)),

Pa(z(k)) = Pa(pswB+(β−1)Σ(x)(x))X(αk+β−1)|x|,

Sa(z(k)) = Sa(pswB+(β−1)Σ(x)(x)).

5. Main result

In this section, let α1, . . . , αn and β1, . . . , βn be fixed numbers such that
{αi, βi} = {0, 1} for all i ∈ {1, . . . , n}, and let αn = 1, βn = 0. We are studying
equalities of the form

xku =

n∏
i=1

xαik+βi

i . (5)

Let us explain why we assume αn = 1. If it were αn = 0, then one of u and
xn would be a suffix of the other (or the equality would not hold for any k),
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and we could cancel out this suffix from both sides. After the cancellation, one
of u and xn would be empty. If xn were empty, we could just leave xαnk+βn

n

out from the product. If u were empty and xn nonempty, then the length of
the left-hand side and the length of the right-hand side of (5) would be equal
for at most one value of k (a similar length argument is used in the proof of
Lemma 5.1).

The equalities (2) with m = 1 and u0 empty can be written in the form (5)
(the number n and the words x1, . . . , xn here are not the same as the n and
x1, . . . , xn in (2)), and conversely, (5) can be written in the form (2). The main
difference between (2) with m = 1 and u0 empty and (5) is that in (2), there
is always a word vi between the kth powers yki and yki+1, but the words are
allowed to be empty, while as in (5), the words x1, . . . , xn have to be nonempty,
but there can be two consecutive kth powers xki and xki+1. Note that allowing
αi, βi to be arbitrary nonnegative integers would not make (5) any more general

because we can always write xαik+βi

i = ykz, where y = xαi
i and z = xβi

i .
For words x, u, x1, . . . , xn, we define a set

K(x, u, x1, . . . , xn) =
{
k ∈ Z+ | xku =

n∏
i=1

xαik+βi

i

}
.

Our goal is to show that this set is always either the whole Z+ or of size at most
two. By Lemma 2.2, we can assume that x is zero-sum. There are two cases
depending on whether there exists an index i such that αiΣ(xi) 6= 0.

If such an i does not exist, then, by using the mapping psw, we can re-
place the words x, u, x1, . . . , xn by new words so that the lengths of the words
and the set K(x, u, x1, . . . , xn) are preserved. With certain assumptions, this
process increases the size of the alphabet. But if we chose the original words
x, u, x1, . . . , xn in such a way that the alphabet was maximal, then of course the
alphabet cannot grow, and this leads to K(x, u, x1, . . . , xn) = Z+. This is the
idea of Lemma 5.3.

If there exists an index i such that αiΣ(xi) 6= 0, then we can take the prefix
sum words of both sides of (5) and look at the numbers of occurrences of a cer-
tain letter (with the help of Lemma 3.1), and the distances between consecutive
occurrences (with the help of Lemma 4.3). If we assume |K(x, u, x1, . . . , xn)| ≥
3, then this leads to a contradiction. This is done in the proof of Lemma 5.4.

First, we are going to prove a couple of simple facts about the equalities (5).

Lemma 5.1. Let u ∈ Γ∗, x, x1, . . . , xn ∈ Γ+, |K(x, u, x1, . . . , xn)| ≥ 2. Then

|x| =
n∑
i=1

αi|xi|, |u| =
n∑
i=1

βi|xi|, Σ(x) =

n∑
i=1

αiΣ(xi), Σ(u) =

n∑
i=1

βiΣ(xi).

Moreover, the left-hand side and the right-hand side of (5) have the same length
and the same sum for all k ∈ Z+.

Proof. Taking the length of (5) gives k|x| + |u| =
∑n
i=1(αik + βi)|xi| for all

k ∈ K(x, u, x1, . . . , xn). This can hold for two different values of k only if
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|x| =
∑n
i=1 αi|xi| and |u| =

∑n
i=1 βi|xi|, and then it holds for all values of k.

The claims about sums can be proved in a similar way.

Lemma 5.2. Let u ∈ Γ∗, x, x1, . . . , xn ∈ Γ+, |K(x, u, x1, . . . , xn)| ≥ 2. Then
alph(x) = alph(xu).

Proof. Let a ∈ alph(xu) be arbitrary. Then Sa(xku) is the same for all k,
namely it is equal to Sa(xu). If j is the largest index such that |xj |a > 0,

then Sa(
∏n
i=1 x

αik+βi

i ) = Sa(xj)X
L(k), where L(k) = |

∏n
i=j+1 x

αik+βi

i |, and
this must also be the same for all k ∈ K(x, u, x1, . . . , xn). If it were j < n,

then L(k) = |
∏n−1
i=j+1 x

αik+βi

i | + |xkn| would be strictly increasing with respect
to k, which is a contradiction. Therefore j = n, that is, |xn|a > 0, and then
|xαnk+βn
n |a = |xkn|a = k|xn|a is strictly increasing with respect to k, and thus the

number of occurrences of a on the right-hand side of (5) is strictly increasing.
The number of occurrences of a on the left-hand side of (5) can be strictly
increasing only if |x|a > 0, so a ∈ alph(x). Because a ∈ alph(xu) was arbitrary,
we have shown that alph(x) = alph(xu).

Lemma 5.3. Let u ∈ Γ∗, x, x1, . . . , xn ∈ Γ+, K = K(x, u, x1, . . . , xn), |K| ≥ 2.
We assume that the zero-sum words in Γ∗ are exactly the words whose Parikh
vectors are scalar multiples of Πx, and that αiΣ(xi) = 0 for all i ∈ {1, . . . , n}.
If K 6= Z+, then there exist words y, v, y1, . . . , yn such that

(|y|, |v|, |y1|, . . . , |yn|) = (|x|, |u|, |x1|, . . . , |xn|),
K(y, v, y1, . . . , yn) = K,

| alph(yv)| > | alph(xu)|.

Proof. Let y = psw(x), v = psw(u), and yi = pswBi
(xi) for all i, where Bi =∑i−1

j=1 βjΣ(xj). Then (|y|, |v|, |y1|, . . . , |yn|) = (|x|, |u|, |x1|, . . . , |xn|). For all k,

we have psw(xku) = ykv because Σ(x) = 0, and

psw
( n∏
i=1

xαik+βi

i

)
=

n∏
i=1

yαik+βi

i (6)

because αiΣ(xi) = 0 for all i. Two words are equal if and only if their prefix sum
words are equal, so K(y, v, y1, . . . , yn) = K. To complete the proof, we assume
that | alph(yv)| ≤ | alph(xu)| and show that K = Z+.

By Lemma 5.2, alph(x) = alph(xu). Let m = | alph(x)|. Let xu = a1 · · · aN
and yv = b1 · · · bN , where a1, . . . , aN , b1, . . . , bN are letters. Because yv =
psw(xu), bi = a1 + · · · + ai for all i. If bi = bj for some i < j, then ai+1 · · · aj
is zero-sum, and by the assumption about Parikh vectors of zero-sum words,
every letter of alph(x) occurs in ai+1 · · · aj , so j − i ≥ m. Thus any m con-
secutive letters in yv are pairwise distinct. This means that any m consecutive
letters in yv contain each letter of alph(yv) exactly once, because | alph(yv)| ≤
| alph(xu)| = m. It follows that bi+m = bi for all i and yv is a prefix of a word in
(b1 · · · bm)∗. Because x is zero-sum, the last letter of y must be 0, and because
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a1 · · · ai is not zero-sum for any i < m, it must be bm = 0 and y ∈ (b1 · · · bm)∗.
It follows that ykv is a prefix of a word in (b1 · · · bm)∗ for all k, and therefore so
is (6) for k ∈ K. Consequently, if the last letter of yi is bj , then the first letter
of yi+1 must be bj+1, and if also αi = 1, then the first letter of yi must be bj+1.
It then follows that (6) is a prefix of a word in (b1 · · · bm)∗ for all k. We have
shown that for all k, ykv and (6) are prefixes of a common word, and they have
the same length by Lemma 5.1, so they are equal. It follows that K = Z+.

Lemma 5.4. Let u ∈ Γ∗, x, x1, . . . , xn ∈ Γ+, K = K(x, u, x1, . . . , xn). We as-
sume that Σ(xn) ≤ 0 = Σ(x), and that αmΣ(xm) 6= 0 for some m ∈ {1, . . . , n}.
Then |K| ≤ 2.

Proof. We assume that |K| ≥ 3 and derive a contradiction. First, we set up

some notation. Let Ai =
∑i−1
j=1 αjΣ(xj) and Bi =

∑i−1
j=1 βjΣ(xj) for all i and

zi(k) = pswAik+Bi
(xαik+βi

i ) for all i, k. By taking the prefix sum word of (5),
we get

psw(x)k psw(u) =

n∏
i=1

zi(k) (7)

for all k ∈ K. Let

I1 = {i ∈ {1, . . . , n} | Ai = Ai+1 = 0},
I2 = {i ∈ {1, . . . , n} | min{Ai, Ai+1} < 0 = max{Ai, Ai+1}},
I3 = {i ∈ {1, . . . , n} | max{Ai, Ai+1} 6= 0}.

Then {1, . . . , n} is a disjoint union of I1, I2, I3. We can recall the geometric
intuition described at the beginning of Section 3 and notice that as k grows,
both endpoints of the curve of zi(k) stay on the same level if i ∈ I1, one of the
endpoints moves down and the other stays on the same level if i ∈ I2, and either
at least one of the endpoints moves up or both move down if i ∈ I3.

For any letter a, we can count the number of occurrences of a in (7) and we
get

k|psw(x)|a + |psw(u)|a =
∑
i∈I1

|zi(k)|a +
∑
i∈I2

|zi(k)|a +
∑
i∈I3

|zi(k)|a (8)

for all k ∈ K. Let a be the largest letter for which there exists k ∈ K such that∑
i∈I2

|zi(k)|a +
∑
i∈I3

|zi(k)|a > 0.

Such a letter a exists because I2∪I3 6= ∅ by the assumption that αmΣ(xm) 6= 0
for some m. If we let

Jj = Ij ∩ {i ∈ {1, . . . , n} | ∃k ∈ K : |zi(k)|a > 0}

for all j ∈ {1, 2, 3}, then (8) can be written as

k|psw(x)|a + |psw(u)|a =
∑
i∈J1

|zi(k)|a +
∑
i∈J2

|zi(k)|a +
∑
i∈J3

|zi(k)|a (9)
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for all k ∈ K. For i ∈ J2 ∪ J3, a = max{max(zi(k)) | k ∈ K}.
Next, we show that J3 = ∅. As a function of k, the first sum on the right-

hand side of (9) is affine by Lemma 3.1 (a) and the second sum is affine by
Lemma 3.1 (b), (c). If it were J3 6= ∅, then the third sum would be convex but
not affine by Lemma 3.1 (d), (e), and thus the whole right-hand side would be
not affine, which would be a contradiction, because the left-hand side is clearly
affine. Therefore it must be J3 = ∅. Now we also know that whether a occurs
in zi(k) does not depend on k. More specifically, by Lemma 3.1 (a), (b), (c), if
i ∈ J1 ∪ J2, then |zi(k)|a > 0 for all k ∈ K, and if i /∈ J1 ∪ J2, then |zi(k)|a = 0
for all k ∈ K.

Next, we show that |psw(x)|a > 0. We have

Sa(psw(x)k psw(u)) = Sa(psw(x) psw(u)),

which does not depend on k. If j = max(J1 ∪ J2), then

Sa

( n∏
i=1

zi(k)
)

= Sa(zj(k))X |zj+1(k)···zn(k)|,

and this should also be the same for all k ∈ K. As a function of k, the degree
of Sa(zj(k)) is increasing by Lemma 4.3. If it were j < n, then the exponent
|zj+1(k) · · · zn(k)| = |zj+1(k) · · · zn−1(k)| + |xkn| would be strictly increasing,
which would be a contradiction. Therefore j = n, that is, n ∈ J1 ∪ J2. From
the assumption Σ(xn) ≤ 0 it follows that An ≥ An+1, and An+1 = Σ(x) = 0
by Lemma 5.1, so it must be n ∈ J1. Every term on the right-hand side of (9)
is increasing, and |zn(k)|a is strictly increasing by Lemma 3.1 (a), so the whole
right-hand side is strictly increasing. The left-hand side must also be strictly
increasing, and thus |psw(x)|a > 0.

Finally, we study how the lengths of the gaps between occurrences of a
in (7) change when k grows. The idea is that on the left-hand side, these
lengths essentially stay the same (the number of a’s and thus the number of
gaps increases, but the lengths of the new gaps are mostly the same as the
lengths of some of the old ones), but on the right-hand side, some of the gaps
become longer. To formalize this idea and to derive a contradiction, we can use
the mapping (Pa + Da + Sa). It follows from Lemma 4.3 (a) that there exist
f1(X), g1(X) ∈ Z[X] such that for all k ∈ K,

(Pa +Da + Sa)(psw(xku)) = kf1(X) + g1(X).

Let J1 ∪ J2 = {i1, . . . , iN}, where i1 < · · · < iN . Let i0 = 0, iN+1 = n+ 1, and
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Lj(k) = |zij+1(k) · · · zij+1−1(k)| for j ∈ {0, . . . , N}. By Lemma 4.2,

Da

( n∏
i=1

zi(k)
)

=
∑

i∈J1∪J2

Da(zi(k)) +

N−1∑
j=1

Sa(zij (k))XLj(k)Pa(zij+1(k)),

Pa

( n∏
i=1

zi(k)
)

= XL0(k)Pa(zi1(k)),

Sa

( n∏
i=1

zi(k)
)

= Sa(ziN (k))XLN (k).

It follows from Lemma 4.3 that there exist f2(X), g2(X) ∈ Z[X] such that for
all k, ∑

i∈J1∪J2

Da(zi(k)) = kf2(X) + g2(X),

and that all the terms

Sa(zij (k))XLj(k)Pa(zij+1
(k)), XL0(k)Pa(zi1(k)), Sa(ziN (k))XLN (k) (10)

are of the form Xγk+δ. Thus there exist M ≥ 0, γ1, . . . , γM , δ1, . . . , δM ∈ Z≥0

such that for all k ∈ K,

(Pa +Da + Sa)
( n∏
i=1

zi(k)
)

= kf2(X) + g2(X) +

M∑
i=1

Xγik+δi .

If I = {i ∈ {1, . . . ,M} | γi = 0} and J = {1, . . . ,M}r I, then we can write

k(f1(X)− f2(X)) + g1(X)− g2(X)−
∑
i∈I

Xδi =
∑
i∈J

Xγik+δi .

The degree of the left-hand side is the same for all except possibly one k. The de-
gree of the right-hand side, on the other hand, is strictly increasing with respect
to k if J 6= ∅, so if we can show that J 6= ∅, then this is a contradiction and
the proof is complete. We assumed that there exists m such that αmΣ(xm) 6= 0.
If this m is in J1 ∪ J2, then it is in J2 and the degree of either Pa(zim(k)) or
Sa(zim(k)) is strictly increasing with respect to k by Lemma 4.3 (b), (c). Then
one of the terms (10) is of the form Xγk+δ with γ > 0 and therefore J 6= ∅. On
the other hand, if m /∈ J1 ∪ J2, then ij < m < ij+1 for some j, and |zm(k)| and
thus also Lj(k) is strictly increasing. Then one of the terms (10) is of the form
Xγk+δ with γ > 0 and therefore J 6= ∅. This completes the proof.

Now we can state and prove our main result.

Theorem 5.5. Let u ∈ Γ∗, x, x1, . . . , xn ∈ Γ+, K = K(x, u, x1, . . . , xn). Then
either |K| ≤ 2 or K = Z+.
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Proof. We can assume that alph(xu) is maximal in the sense that if

(|y|, |v|, |y1|, . . . , |yn|) = (|x|, |u|, |x1|, . . . , |xn|) and K(y, v, y1, . . . , yn) = K

for some words y, v, y1, . . . , yn, then | alph(yv)| ≤ | alph(xu)|. By Lemma 2.2, we
can assume that x is zero-sum and that the zero-sum words in Γ∗ are exactly the
words whose Parikh vectors are scalar multiples of Πx. The use of Lemma 2.2
just renames the letters, so the assumption about maximality of alph(xu) still
holds. We can assume that Σ(xn) ≤ 0 by replacing every letter by its negation
if necessary. This operation preserves zero-sum words, so all of the assumptions
still hold. If there exists m such that αmΣ(xm) 6= 0, then |K| ≤ 2 by Lemma 5.4,
and if there does not exist m such that αmΣ(xm) 6= 0, then K = Z+ by
Lemma 5.3.

The result can also be formulated as follows.

Corollary 5.6. Let u, u1, . . . , un ∈ Γ∗ and x, x1, . . . , xn ∈ Γ+. Then

xku =

n∏
i=1

uix
k
i (11)

holds either for all or for at most two values of k ∈ Z+. Similarly,

uxk =

n∏
i=1

xki ui (12)

holds either for all or for at most two values of k ∈ Z+.

Proof. Equality (11) is of the form (5), so the first claim follows from Theo-
rem 5.5. If we denote the reversal of a word w by wR, then (12) is equivalent
to

(xR)kuR =

n−1∏
i=0

uRn−i(x
R
n−i)

k,

which is of the same form as (11), so also the second claim follows.

Answer to Question 1.1 follows as a corollary.

Corollary 5.7. Let x, x1, . . . , xn ∈ Γ∗. If xk = xk1 · · ·xkn for three positive
integers k, then the words x, x1, . . . , xn commute.

Proof. It follows from Theorem 5.5 that xk = xk1 · · ·xkn for all k. From xn =
xn1 · · ·xnn it follows that the words x, x1, . . . , xn commute by the result in [1].

15



6. Conclusion

As one possible direction for further research, we can ask the following ques-
tion: For how many values of k does (2) need to hold to guarantee that it
holds for all k ≥ 0? This was first studied by Kortelainen [13]. Currently it
is known that m + n different values of k are sufficient [19]. Holub and Korte-
lainen [11] proved that if m = 1 and there exists i ≥ 2 such that (2) holds for
all k ∈ {i, i+ 1, i+ 2}, then (2) holds for all k ≥ 0. In this article, we have come
quite close to showing that if m = 1 and (2) holds for three values of k, then (2)
holds for all k ≥ 0. If we tried to replace the left-hand side of (5) by u0x

ku1,
there would be some problems, at least in the part of the proof of Lemma 5.4
where it is proved that |psw(x)|a > 0. If a different way to handle this part of
the proof was found, then completely solving the case m = 1 might be possible.
The case m > 1, on the other hand, seems significantly more difficult.

Another direction for future research would be to try to apply the methods
used in this paper to some other entirely different problems on word equations,
as was done in [16]. We hope and believe that, in addition to the immediate
impact of solving an open problem, this article will also lead to further advances
in the future.
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