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Abstract. We briefly survey some results and open problems on word equations, especially on
those equations where the right-hand side is a power of a variable. We discuss a method that was
recently used to prove one of the results, and we prove improved versions of some lemmas that
are related to the method and can be used as tools when studying word equations. We use the
method and the tools to give new, simple proofs for several old results.

1. Introduction

We begin by describing some results (both classical and recent) and open problems related to word
equations. In this section, we use the term “word equation” informally to refer to an equality of words.
Later, we will give a formal definition of word equations and reformulate some theorems in terms of
this formalism. For basics in combinatorics on words, we refer to the book of Lothaire [1]. Throughout
this article, let Γ denote an alphabet.

The following classical result was proved by Lyndon and Schützenberger [2] (actually, they proved
a stronger result where the free monoid Γ∗ is replaced by a free group). Other proofs for the free
monoid case have been given, for example the very simple proof by Harju and Nowotka [3].

Theorem 1.1. Let x, y, z ∈ Γ∗ and k, l,m ≥ 2. If xkyl = zm, then x, y and z commute.

Theorem 1.1 can also be formulated as follows: If k, l ≥ 2 and x and y do not commute, then xkyl

is primitive. But what about the case where k = 1 or l = 1? Then xkyl might be nonprimitive, but
only for one pair (k, l). This is formally stated in the following extension of Theorem 1.1.

Theorem 1.2. Let x, y ∈ Γ∗ be words that do not commute. The language x+y+ contains at most
one nonprimitive word, and this word is in xy+ ∪ x+y.
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Theorem 1.2 was proved by Shyr and Yu [4], and a simpler proof was given by Dömösi, Horváth
and Vuillon [5]. However, it is actually a special case of a result that was proved earlier by Spehner [6],
and also by Barbin-Le Rest and Le Rest [7]. This stronger result is given in Theorem 1.3. As an
introduction to this theorem, let us consider the following question: By Theorem 1.2, the language
x+y+ contains at most one nonprimitive word, but what about the larger language {x, y}+ r {x, y}?
Trivially, if u ∈ {x, y}+, then um is nonprimitive for all m ≥ 2. If we exclude these trivial cases,
then there is, up to conjugacy, at most one nonprimitive word (if u is nonprimitive, then so is every
conjugate of u). This is formally stated in the following extension of Theorem 1.2.

Theorem 1.3. Let x, y ∈ Γ∗ be words that do not commute. Let {X,Y } be an alphabet and let
h : {X,Y }∗ → Γ∗ be the morphism defined by h(X) = x and h(Y ) = y. Up to conjugacy, there is
at most one primitive word W ∈ {X,Y }+ r {X,Y } such that h(W ) is nonprimitive, and this word
W is in XY + ∪ Y X+ (again, up to conjugacy).

Equations xkyl = zm can be generalized by letting the left-hand side consist of more than two
powers. Harju and Nowotka [8] proved the following result.

Theorem 1.4. Let n ≥ 2, x0, . . . , xn ∈ Γ∗, k0, . . . , kn ≥ 3 and k0 ≥ n. Assume that there does not
exists i ∈ {1, . . . , n} such that the primitive roots of x0 and xi are conjugate. Then xk11 · · ·xknn 6= xk00 .

Actually, there is a small error in the formulation of this theorem in [8]: The assumption about the
primitive roots not being conjugate is replaced by the assumption that |x0| 6= |xi| for all i ≥ 1 and
x0xi 6= xix0 for at least one i ≥ 1, but this assumption is too weak, as shown by the counterexample
n = 3, k0 = k2 = k3 = 3, k1 = 5, x0 = (a3b3)2, x1 = a3b3, x2 = a, x3 = b.

The equations
xk1x

k
2 · · ·xkn−1x

k
n = xk0 (1)

have been studied a lot. A simple example would be (ab)kak(ba)k = (ababa)k, which holds for
k ∈ {1, 2}, but not for any larger k. The main question about these equations has been that if (1) holds
for three different positive values of k, then do the words x0, . . . , xn necessarily commute. The first
article about this topic was the paper of Hakala and Kortelainen [9], the case where all three values of
k are greater than one was solved by Holub [10], and the question was completely settled in an article
by Saarela [11], where the following theorem was proved.

Theorem 1.5. Let n ≥ 1 and x0, . . . , xn ∈ Γ∗. If xk1 · · ·xkn = xk0 for three positive integers k, then
the words x0, . . . , xn commute.

We can generalize (1) by adding “midwords” between the powers. The following result was proved
by Holub and Kortelainen [12]. It is an open question whether it would be sufficient to assume that
the equation holds for three integers k ≥ 1.

Theorem 1.6. Let n ≥ 1 and si, ti, xi ∈ Γ∗ for all i. If

s0x
k
1s1 · · ·xknsn = t0x

k
0t1

holds for three consecutive integers k ≥ 2, then it holds for all k.
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We can also allow both sides of the equation to have several powers. The first article about this
topic was the paper of Kortelainen [13]. The following theorem was proved by Saarela [14] and it is a
slight improvement of a result in [13]. It is an open question whether the bound m+n can be replaced
by a constant that does not depend on m and n.

Theorem 1.7. Let m,n ≥ 1 and si, ti, xi, yi ∈ Γ∗ for all i. If

s0x
k
1s1 . . . x

k
msm = t0y

k
1 t1 . . . y

k
ntn. (2)

holds for m + n values of k, then it holds for all k.

We will conclude this section by mentioning a very significant open problem on word equa-
tions (see the next section for formal definitions): What is the maximal size of an independent sys-
tem of word equations on n variables? By Ehrenfeucht’s compactness property, proved by Albert
and Lawrence [15] and by Guba [16], an independent system cannot be infinite. Karhumäki and
Plandowski gave examples of independent systems of size Θ(n4) [17]. In the case of three variables,
which is the simplest nontrivial case, the maximal size of an independent system has been conjectured
to be three by Culik and Karhumäki [18], and proved to be at most logarithmic with respect to the size
of the shortest equation in the system by Nowotka and Saarela [19].

This general problem about sizes of independent systems is connected to the specific equations we
have discussed in several ways: First, as pointed out by Plandowski [20], if Theorem 1.5 had turned
out to be false, then the above-mentioned lower bound Θ(n4) could have been replaced by a larger
lower bound Θ(n5), and in principle it might still be possible to use the equations (2) to construct
large independent systems. Second, in [14], the same algebraic techniques were used both to prove
Theorem 1.7 and to analyze independent systems.

In this article, we will present the ideas behind the proof of Theorem 1.5 (although we will not
go through the whole proof), and we will use similar ideas to give new proofs for Theorems 1.1, 1.2
and 1.3.

2. Preliminaries

The empty word is denoted by ε. A nonempty word is primitive if it is not a power of a shorter word.
Every nonempty word w can be uniquely written in the form pn where p is primitive. Then p is called
the primitive root of w.

We say that words x0, . . . , xn commute if xixj = xjxi for all i, j ∈ {0, . . . , n}. It is well-known
that words x0, . . . , xn ∈ Γ∗ commute if and only if there exists p ∈ Γ∗ such that x0, . . . , xn ∈ p∗. If
x0, . . . , xn are nonempty, then this is equivalent to x0, . . . , xn having the same primitive root.

The length of a word w is denoted by |w| and the number of occurrences of a letter a in w is denoted
by |w|a. Let Γ = {a1, . . . , an}. If we fix an order relation < for the letters and a1 < · · · < an, then
the Parikh vector of w ∈ Γ∗ can be defined as (|w|a1 , . . . , |w|an).

Let Ξ be an alphabet of variables. A word equation is a pair (U, V ) ∈ Ξ∗ × Ξ∗, and the solutions
of this word equation over an alphabet Γ are the morphisms h : Ξ∗ → Γ∗ such that h(U) = h(V ).
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The set of all solutions of an equation E is denoted by SolΓ(E). Usually Γ is clear from context and
we can use the notation Sol(E).

The word equations defined above are constant-free. Also word equations with constants could be
defined, but in this article, we consider only constant-free equations.

A morphism h : Ξ∗ → Γ∗ is periodic if there exists p ∈ Γ∗ such that h(X) ∈ p∗ for all X ∈ Ξ.
Periodic solutions of word equations are rather trivial, so usually we are only interested in nonperiodic
solutions. It is well-known that if Ξ = {X,Y } and U 6= V , then the equation (U, V ) has only periodic
solutions.

Example 2.1. Let Ξ = {X,Y, Z}. The nonperiodic solutions of the equation (XY Z,ZY X) are
exactly the morphisms h defined by

h(X) = (pq)ip, h(Y ) = (qp)jq, h(Z) = (pq)kp,

where p, q ∈ Γ∗, pq 6= qp, and i, j, k ≥ 0. Every periodic morphism is a solution.

We can define boolean combinations of word equations in a natural way. Then we have, for
example,

Sol(E1 ∧ E2) = Sol(E1) ∩ Sol(E2),

Sol(E1 ∨ E2) = Sol(E1) ∪ Sol(E2),

Sol(¬E) = Sol(E){,

where the complement is with respect to the set of all morphisms from Ξ∗ to Γ∗. A conjunction
E1 ∧ · · · ∧ En can also be denoted by E1, . . . , En and called a system of equations, or a pair of
equations in the case n = 2.

The property of being nonperiodic can be encoded as a boolean combination of equations: A
morphism h : Ξ∗ → Γ∗ is nonperiodic if and only if it is a solution of the boolean combination

¬
∧

X,Y ∈Ξ

(XY, Y X).

A system of equations is independent, if it is not equivalent to any of its proper subsystems. A
system E1, . . . , En is independent if and only if for every i there exists a morphism h such that
h ∈ Sol(Ej) for all j 6= i but h /∈ Sol(Ei).

3. Sums of words

We assume that our alphabet Γ is a subset of R (this is not a restriction; we can assign numerical values
to the letters in any way we like, as long as no two letters get the same value). Then we can define
the sum of a word w ∈ Γ∗, denoted by Σ(w), to be the sum of its letters, that is, if w = a1 · · · an and
a1, . . . , an ∈ Γ, then Σ(w) = a1 + · · ·+ an. Words w such that Σ(w) = 0 are called zero-sum words.
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If Γ = {b1, . . . , bm}, then the sum of w ∈ Γ∗ is also the inner product of the vector (b1, . . . , bm)
and the Parikh vector (|w|b1 , . . . , |w|bm). Zero-sum words are then exactly those words whose Parikh
vectors are orthogonal to (b1, . . . , bm).

The notation a1 · · · an of course means the word consisting of the letters a1, . . . , an and not a
product of numbers. If w1, . . . , wn are words, we can use the notation

n∏
i=1

wi = w1 · · ·wn

for their concatenation.
Let a1, . . . , an ∈ Γ. The prefix sum word of w = a1 · · · an is the word psw(w) = b1 · · · bn, where

bi = Σ(a1 · · · ai) for all i. Usually, psw(w) is not a word over Γ, but over some other alphabet. We can
give a simple formula for the prefix sum word of a product by using the notation pswr(w) = c1 · · · cn,
where r ∈ R and ci = bi + r for all i. Then, for w1, . . . , wk ∈ Γ∗,

psw(w1 · · ·wk) =

k∏
i=1

pswΣ(w1···wi−1)(wi).

If w1, . . . , wk−1 are zero-sum, then we have the simpler formula

psw(w1 · · ·wk) =

k∏
i=1

psw(wi).

For the kth power of a word w, we get the formula

psw(wk) =
k∏

i=1

psw(i−1)Σ(w)(w).

If w is zero-sum, then we have psw(wk) = psw(w)k.
Because letters are real numbers, there is a natural order relation for them. The largest and smallest

letters in a word w can be denoted by max(w) and min(w), respectively. Usually, max and min are
used together with prefix sum words. Note that

max(pswr(w)) = max(psw(w)) + r, min(pswr(w)) = min(psw(w)) + r.

The above definitions have the following graphical interpretation: Let w = a1 · · · an. The word
w can be represented by a plane curve (more specifically, a polygonal chain) by starting at the origin,
moving a1 steps up and one step to the right, a2 steps up and one step to the right, and so on. If
psw(w) = b1 · · · bn, this curve is also obtained by connecting the points (0, 0), (1, b1), . . . , (n, bn).
The properties of this curve can be studied, leading to a graphical way of analyzing words. See
Figure 1 for an example.

The last point on the curve of w is (|w|,Σ(w)). If we start counting from the point (1, b1) instead of
(0, 0), then the biggest y-coordinate is max(psw(w)) and the smallest y-coordinate is min(psw(w)).
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•

Figure 1. Graphical representation of the word w = bbcaac, where a = 1, b = 2, and c = −3. We have
|w| = 6, Σ(w) = 0, and psw(w) = 241230.

•
• • •

•

• •
• •

•
• • •

• •
• •

Figure 2. Graphical representation of the words u = 100, v = 2010 and uv = 1002010.

If we use pswr(w) instead of psw(w), then we get a similar curve starting at the point (0, r) instead
of (0, 0). The curve of uv consists of the curve of u followed by the curve of v translated in such a
way that its starting point matches the endpoint of the curve of u, see Figure 2.

Theorem 1.5 was proved in [11] by using the definitions given in this section. The idea in the
proof can be summarized as follows: The alphabet can be normalized so that x0 becomes a zero-sum
word. If all xi are zero-sum, we can compress them by writing them as products of minimal zero-sum
words. After compression and normalization (possibly repeated several times), either the words xi are
unary, which is a trivial case, or x0 is zero-sum but at least one xi is not, in which case we can analyze
the curves of xk0 and xk1 · · ·xkn. Specifically, we can look at the highest points on the curves, or the
points at a certain other height, and count how many times they appear. In this way, we can see that
the curves can be equal for at most two values of k. This leads to a proof of Theorem 1.5.

4. Tools

When studying words from a combinatorial point of view, the choice of the alphabet is arbitrary
(except for the size of the alphabet). Therefore, we can always change the numerical values of the
letters. It was proved in [11] that, given any word u, the alphabet can be normalized so that u becomes
a zero-sum word. In Lemma 4.1, we give an improved version of this result.

Before stating and proving the lemma, let us consider the following question: If the alphabet is
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normalized so that u becomes zero-sum, then which other words become zero-sum? Certainly, if
two words have the same primitive root, then either both or neither are zero-sum. More generally,
if the Parikh vectors of two nonempty words are linearly dependent, that is, if the vectors are scalar
multiples of each other, then either both or neither of the words are zero-sum. If the Parikh vectors
are linearly independent, then both words can still be zero-sum in some cases, but this can be avoided
if the normalization is done in a suitable way. This is proved in the next lemma. We also prove that
we can assume that all letters are integers; usually, this is not important, but in some cases it might be
convenient.

Lemma 4.1. Let n ≥ 0 and u, v1, . . . , vn ∈ Γ∗. For every i ∈ {1, . . . , n}, we assume that the Parikh
vector of vi is not a scalar multiple of the Parikh vector of u. There exists an alphabet ∆ ⊂ Z and an
isomorphism g : Γ∗ → ∆∗ such that Σ(g(u)) = 0 and Σ(g(vi)) 6= 0 for all i ∈ {1, . . . , n}.

Proof:
We will give an explicit construction of g. The claim could also be proved by an abstract linear
algebraic argument.

The case u = ε is trivial, so let u 6= ε. Let Γ = {a0, . . . , am} and let am appear in u. Let
B = 1 + |u|max{1, |v1|, . . . , |vn|}. Let

bi = |u|amBi for i < m, bm = −
m−1∑
i=0

|u|aiBi.

Let ∆ = {b0, . . . , bm} ⊂ Z be an alphabet and let g : Γ∗ → ∆∗ be the morphism defined by
g(ai) = bi for all i. Then g is injective and therefore an isomorphism, and Σ(g(u)) = 0.

To complete the proof, we assume that there exists j ∈ {1, . . . , n} such that Σ(g(vj)) = 0 and
derive a contradiction. The equality Σ(g(vj)) = 0 can be written as

m−1∑
i=0

|vj |ai |u|amBi − |vj |am
m−1∑
i=0

|u|aiBi = 0.

from which it follows that

m−1∑
i=0

|vj |ai |u|amBi =
m−1∑
i=0

|vj |am |u|aiBi.

The coefficients |vj |ai |u|am and |vj |am |u|ai are less than B, so we have B-ary expansions of non-
negative integers on both sides. By the uniqueness of B-ary expansions, |vj |ai |u|am = |vj |am |u|ai
for all i ∈ {0, . . . ,m − 1}, and trivially also for i = m. Therefore |u|am(|vj |a1 , . . . , |vj |am) =
|vj |am(|u|a1 , . . . , |u|am), which contradicts the assumption about the Parikh vectors. ut

When using Lemma 4.1, we usually do not care about the words vi, that is, we can choose n = 0.
The next lemma was proved in [11]. For completeness, we repeat the proof here. The lemma

claims that every zero-sum word can be written as a product of minimal zero-sum words in a unique
way. We can use this to “compress” zero-sum words by replacing these factors by letters.
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Lemma 4.2. The set of zero-sum words over Γ is a free monoid.

Proof:
Clearly, zero-sum words form a monoid. This monoid is right unitary, that is, if u and uv are zero-sum,
then so is v. It is well-known that a right unitary submonoid of a free monoid is free. ut

The next lemma generalizes an idea that was used in [11].

Lemma 4.3. If h : Ξ∗ → Γ∗ is a length-minimal nonperiodic solution of a boolean combination of
word equations over Ξ, then Σ(h(X)) 6= 0 for at least one variable X ∈ Ξ.

Proof:
Let h : Ξ∗ → Γ∗ be a nonperiodic solution of the boolean combination of word equations such that
Σ(h(X)) = 0 for all X ∈ Ξ. We will prove that h is not length-minimal.

By Lemma 4.2, we can let Z ′ be the basis of the free monoid of zero-sum words over Γ. It
has a finite subset Z such that h(X) ∈ Z∗ for all X ∈ Ξ. Let ∆ be an alphabet and g : Z∗ →
∆∗ an isomorphism. The morphism g ◦ h satisfies exactly the same equations as h because g is
an isomorphism, and therefore g ◦ h is a nonperiodic solution of the boolean combination of word
equations.

It remains to be shown that |(g ◦ h)(X)| < |h(X)| for at least one X ∈ Ξ. Because h is
nonperiodic, there exists a variable X and a nonzero letter a appearing in h(X). There are words
z1, . . . , zm ∈ Z such that h(X) = z1 · · · zm. Then g(zi) ∈ ∆ for all i. The words zi cannot be empty,
and at least one of them contains the nonzero letter a. This means that at least one of them has length
at least 2. Thus |(g ◦ h)(X)| = m < |z1|+ · · ·+ |zm| = |h(X)|. This completes the proof. ut

When studying the nonperiodic solutions of a boolean combination of word equations (usually a
single equation or a system of equations), we can use Lemmas 4.1 and 4.3 together to assume that
there is a nonperiodic solution that maps one freely-chosen variable (or a product of variables) to a
zero-sum word, but does not map all variables to zero-sum words. Often we can deduce that the sum
of the image of some particular variable X must be nonzero. Then we can also assume that the sum
of the image of X is positive, simply by multiplying every letter by −1 if necessary.

5. New proofs

In this section, we give new proofs for Theorems 1.1, 1.2 and 1.3 using prefix sum words and the ideas
of Section 3 and the tools of Section 4.

The following theorem is a reformulation of Theorem 1.1 using the formalism of word equations.

Theorem 5.1. Let X,Y, Z be variables and let k, l,m ≥ 2. The equation (XkY l, Zm) does not have
a nonperiodic solution.

Proof:
We assume that the equation has a nonperiodic solution and derive a contradiction. By Lemmas 4.1
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and 4.3, the equation has a solution h such that Σ(h(Z)) = 0 and at least one of h(X), h(Y ) is not
zero-sum. Let h(X) = x, h(Y ) = y and h(Z) = z. Because kΣ(x) + lΣ(y) = mΣ(z) = 0, one of
Σ(x) and Σ(y) must be positive and the other one negative. We can assume that Σ(y) < 0 < Σ(x).

Let us first give an informal description of the proof in a geometric way (see Figure 3). The idea
is to look at the highest points of the curves of xkyl and zm. The curve of xkyl consists of k translated
copies of the curve of x, followed by l translated copies of the curve of y. Because Σ(x) > 0, the
last copy of the curve of x is the highest one, and because Σ(y) < 0, the first copy of the curve of
y is the highest one. Therefore, the highest point can only appear within a part of length |xy| in the
middle. On the other hand, the curve of zm consists of m translated copies of the curve of z. Because
Σ(z) = 0, all copies are at the same level. Therefore, the highest point appears within each copy at
corresponding positions, so the distance of the first and the last occurrence is at least |zm−1|. This
means that the curves of xkyl and zm cannot be the same, because |xy| ≤ |zm−1|.

The proof can be written formally using prefix sum words. We have

k−1∏
i=0

pswiΣ(x)(x)

l−1∏
j=0

pswkΣ(x)+jΣ(y)(y) = psw(xkyl) = psw(zm) = psw(z)m. (3)

Let a = max(psw(xkyl)) = max(psw(zm)). For all i < k − 1 and j > 0, we have

max(pswiΣ(x)(x)) < max(psw(k−1)Σ(x)(x)) ≤ a,

max(pswkΣ(x)+jΣ(y)(y)) < max(pswkΣ(x)(y)) ≤ a,

so the letter a can appear on the left-hand side of (3) only within the factor

psw(k−1)Σ(x)(x) pswkΣ(x)(y)

of length |xy| ≤ |xkyl|/2 = |zm|/2. On the other hand, a must appear in psw(z), so we can write
psw(z) = paq for some words p, q. Then the right-hand side of (3) has a factor aq psw(z)m−2pa of
length |z|m−1 + 1 > |zm|/2. This is a contradiction. ut

•x
•x

•x

•
y

•
y

• •
z

•
z

Figure 3. This figure illustrates the proof of Theorem 5.1 in the case k = 3, l = m = 2, Σ(y) < Σ(z) = 0 <
Σ(x). Here we have simplified representations of the curves of x3y2 and z2, where the curves of x, y and z are
represented by straight lines, even though they are probably more complicated.

The following theorem together with Theorem 5.1 gives a reformulation of Theorem 1.2. The
proof is quite similar to the proof of Theorem 5.1.

Theorem 5.2. Let X,Y, U, V be variables. Let k, l, k′, l′ ≥ 1, m,n ≥ 2, and (k, l) 6= (k′, l′). The
pair of equations (XkY l, Um), (Xk′Y l′ , V n) does not have a nonperiodic solution.
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Proof:
We assume that the pair of equations has a nonperiodic solution and derive a contradiction. By Theo-
rem 5.1, one of k, l is 1 and one of k′, l′ is 1. Let h be a length-minimal nonperiodic solution and let
h(X) = x, h(Y ) = y, h(U) = u and h(V ) = v. By symmetry, we can assume that |um| ≥ |vn| and
l = 1. Then l = 1 ≤ l′ and |xkyl| = |um| ≥ |vn| = |xk′yl′ |, so it must be k > k′. By Lemmas 4.1
and 4.3, we can assume that Σ(u) = 0 and Σ(y) < 0 < Σ(x). It follows that Σ(v) < 0.

We have umyl
′−l = xkyl

′
= xk−k

′
vn. The geometric idea is to conclude that the highest point on

the curve of xk−k
′
vn can only appear within the first copy of the curve of v, but on the other hand, the

highest point of the curve of umyl
′−l must appear within each copy of the curve of u, and this leads to

a contradiction (see Figure 4).
Let a = max(psw(xkyl

′
)). We have

psw(xkyl
′
) =

k−1∏
i=0

pswiΣ(x)(x)
l′−1∏
i=0

pswkΣ(x)+iΣ(y)(y)

and thus max(psw(k−1)Σ(x)(x)) ≤ a and max(pswkΣ(x)(y)) ≤ a.
We have

psw(xk−k
′
vn) =

k−k′−1∏
i=0

pswiΣ(x)(x)
n−1∏
i=0

psw(k−k′)Σ(x)+iΣ(v)(v),

and a can only appear here within the factor psw(k−k′)Σ(x)(v) of length |v| ≤ |vn|/2 ≤ |um|/2.
We have

psw(umyl
′−l) = psw(u)m

l′−l−1∏
i=0

pswiΣ(y)(y), (4)

and a can only appear here within the factor psw(u)m, so we can write psw(u) = paq for some words
p, q. Then (4) has a factor aq psw(u)m−2pa of length |u|m−1 + 1 > |um|/2. This is a contradiction.

ut

•x
•x

•x

•

y

• •
u

•
u

• •
v

•
v •x

•x
•x

•

y

•

y
• •

u
•

u

•

•

v

•

v

Figure 4. This figure illustrates the proof of Theorem 5.2 in the case where Σ(v),Σ(y) < Σ(u) = 0 < Σ(x)
and either k = 3, l = l′ = 1, k′ = m = n = 2 (on the left) or k = 3, l = k′ = 1, l′ = m = n = 2 (on the
right). Here we have simplified representations of the curves of x3y, xv2 and u2 (on the left), and the curves of
x3y2, x2v2 and u2y (on the right).

The following theorem together with Theorem 5.2 gives a reformulation of Theorem 1.3. The
proof is a bit more complicated than the proofs of Theorems 5.1 and 5.2.
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Theorem 5.3. Let X,Y be variables and let m ≥ 2. Let W ∈ {X,Y }∗ be primitive and let
|W |X , |W |Y ≥ 2. The equation (W,Zm) does not have a nonperiodic solution.

Proof:
We assume that the equation has a nonperiodic solution and derive a contradiction. First, we note that
W /∈ (XY )∗∪(Y X)∗ because it is primitive and contains at least two occurrences of X , and therefore
either W ∈ (XY )∗X∪(Y X)∗Y or W contains XX or Y Y as a factor. In any case, W has a conjugate
that begins and ends with the same variable. By symmetry between X and Y , we can assume that W
has a conjugate W ′ that begins and ends with X . If (W,Zm) has a nonperiodic solution, then so
does (W ′, Zm). Let W ′ = W1 · · ·Wn, where W1, . . . ,Wn ∈ {X,Y }. By Lemmas 4.1 and 4.3, the
equation (W ′, Zm) has a solution h such that

Σ(h(Y )) < Σ(h(Z)) = 0 < Σ(h(X)).

Let h(X) = x, h(Y ) = y, h(Z) = z and h(Wi) = wi for all i.
Let si = Σ(w1 · · ·wi−1) for i ∈ {1, . . . , n + 1}. Let

I = {i | si = min{s1, . . . , sn+1}} and J = {i | si = max{s1, . . . , sn+1}}.

We have

sn = Σ(w1 · · ·wn)− Σ(wn) = −Σ(x) < 0 = s1 = sn+1 < Σ(x) = Σ(w1) = s2,

so 1, n + 1 /∈ I ∪ J . Note that if i ∈ J , then wi = y (because otherwise si+1 = si + Σ(x) > si) and
wi−1 = x (because otherwise si−1 = si − Σ(y) > si).

If i ∈ J , i′ /∈ J and Wi′ = Y , then Wi = Y , si′ < si, si′+1 < si+1 and i + 1 /∈ I . This means
that if there exists i ∈ J such that i + 1 ∈ I , then sj = si for every j such that Wj = Y , and thus
between any two consecutive occurrences of Y in W ′, there are −Σ(y)/Σ(x) occurrences of X . This
would mean that W ′ ∈ (XkY X l)∗ for some k, l, which contradicts the primitivity of W ′. Therefore,
there does not exist i ∈ J such that i + 1 ∈ I . Similarly, we can show that there does not exist i ∈ I
such that i + 1 ∈ J .

There exists an index j and words p, q such that z = w1 · · ·wj−1p and zm−1 = qwj+1 · · ·wn.
By the previous paragraph, j, j + 1 /∈ J or j, j + 1 /∈ I . For the rest of the proof, we assume that
j, j + 1 /∈ J . The case j, j + 1 /∈ I can be proved in a similar way.

Let a = max(psw(w1 · · ·wn)) = max(psw(zm)). Note that if wi = y, then a can appear in
pswsi(wi) only if i ∈ J , and if wi = x, then a can appear in pswsi(wi) only if i + 1 ∈ J . We have

psw(w1 · · ·wn) =

n∏
i=1

pswsi(wi),

and a can only appear here within the factors

pswsi−1
(wi−1) pswsi(wi) = pswsi−1

(x) pswsi(y)

for i ∈ J . In particular, a does not appear in pswsj (wj). There exists a word u not containing a such
that ua is a prefix of pswsi−1

(x) pswsi(y) for all i ∈ J .
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The word psw(z) = psw(w1 · · ·wj−1p) must contain a, so J ∩ {2, . . . , j − 1} 6= ∅ and we can
let k = min(J ∩ {2, . . . , j − 1}). The word psw(zm−1) = psw(qwj+1 · · ·wn) must contain a, so
J ∩ {j + 2, . . . , n} 6= ∅ and we can let l = min(J ∩ {j + 2, . . . , n}). Then the shortest prefix of
psw(z) that contains a is psw(w1 · · ·wk−2)ua, and the shortest prefix of psw(zm−1) that contains a
is psw(qwj+1 · · ·wl−2)ua. Therefore, |w1 · · ·wk−2| = |qwj+1 · · ·wl−2| and thus

|wk−1 · · ·wl−2| = |w1 · · ·wl−2| − |w1 · · ·wk−2|
= |w1 · · ·wl−2| − |qwj+1 · · ·wl−2| = |w1 · · ·wj−1p| = |z|.

This means that there exists a conjugate z′ of z such that

wk−1 · · ·wl−2 = z′ and wl−1 · · ·wnw1 · · ·wk−2 = (z′)m−1.

Let
U = Wk−1 · · ·Wl−2 and V = Wl−1 · · ·WnW1 · · ·Wk−2.

Then h(U), h(V ) ∈ (z′)∗, so h is a solution of the two-variable equation (UV, V U). If UV 6= V U ,
then this means that x and y commute, which is a contradiction. If UV = V U , then U and V are
powers of a common word, UV is not primitive, and neither is W because it is a conjugate of UV .
This is also a contradiction. ut

6. Conclusion

In this article, we have considered word equations. We have mentioned some results and problems
that we think are interesting. We have also presented and improved recent methods and tools that we
believe will be useful in many situations in the future. Finally, we have given new proofs that we hope
are illustrative, both in the sense that they illustrate why the results are true, and in the sense that they
illustrate the general proof techniques.
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