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Abstract. Palindromic length of a word is defined as the smallest num-
ber n such that the word can be written as a product of n palindromes.
It has been conjectured that every aperiodic infinite word has factors of
arbitrarily high palindromic length. A stronger variant of this conjecture
claims that every aperiodic infinite word has also prefixes of arbitrar-
ily high palindromic length. We prove that these two conjectures are
equivalent. More specifically, we prove that if every prefix of a word is
a product of n palindromes, then every factor of the word is a product
of 2n palindromes. Our proof quite naturally leads us to compare the
properties of palindromic length in free monoids and in free groups. For
example, the palindromic lengths of a word and its conjugate can be
arbitrarily far apart in a free monoid, but in a free group they are almost
the same.
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1 Introduction

Palindromes are a common topic in combinatorics on words. Some examples of
subtopics are palindromic richness [11] and palindrome complexity [1]. In this
article, we are interested in palindromic factorizations of words. Every word
can be trivially written as a product of palindromes, because every letter is a
palindrome. However, studying minimal palindromic factorizations is a highly
nontrivial topic that has been studied in many articles, for example by Ravsky [15].
The length of a minimal palindromic factorization of a word, that is, the smallest
number n such that the word can be written as a product of n palindromes, is
called the palindromic length of the word.

Frid, Puzynina and Zamboni [10] made the following conjecture about the
palindromic lengths of factors of infinite words.

Conjecture 1. Every aperiodic infinite word has factors of arbitrarily high palin-
dromic length.

They also proved the conjecture for a large class of words, including all words
that are k-power-free for some k. They actually proved that all words in this
class have not only factors but also prefixes of arbitrarily high palindromic length.
This leads to the following stronger version of the conjecture.
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Conjecture 2. Every aperiodic infinite word has prefixes of arbitrarily high palin-
dromic length.

Let us mention here some related results, many of which have been inspired
by the conjectures. The complexity of determining the palindromic length of a
word is known to be O(n log n) [8, 14]. Words of palindromic length at most two
are sometimes called symmetric or palindrome pairs, and they have appeared
in many articles [6, 5, 12, 13]. Variations of palindromic length called left greedy
palindromic length and right greedy palindromic length were defined and studied
by Bucci and Richomme [7].

In this article, we prove the equivalence of Conjectures 1 and 2. More specif-
ically, we prove that the maximal palindromic length of factors of a word can
be at most twice as large as the maximal palindromic length of prefixes of the
word, and this result is at least very close to optimal. We also give other results
on palindromic length. Conjecture 1 remains a very interesting open problem.

Palindromes and palindromic length can also be defined in a free group
in a natural way. To avoid confusion, we talk about FG-palindromes and FG-
palindromic length in the case of free groups. These concepts were studied by
Bardakov, Shpilrain and Tolstykh [3]. They proved that in every nonabelian
free group, there are elements with arbitrarily high FG-palindromic length.
Palindromic length has been defined and studied in many other groups as well,
see, for example, the paper by Bardakov and Gongopadhyay about finitely
generated solvable groups [2] or the paper by Fink about wreath products [9].

Because a free monoid of words is a subset of a free group, both the ordinary
palindromic length and FG-palindromic length are defined for words. However,
there does not seem to be any research on the relation of these two concepts. We
take the first steps in this direction, inspired by the fact that some of our results
on palindromic length can be formulated by using free groups and, specifically,
inverses of palindromes. We prove that the ratio of the palindromic length and
the FG-palindromic length of a word can be arbitrarily large, and we study
the relation of palindromic length, FG-palindromic length, conjugacy, and edit
distance. Combinatorial and algorithmic analysis of FG-palindromic length seems
like an interesting topic for future research.

2 Preliminaries

Throughout the article, let Σ be an alphabet. The set of all words over Σ is
denoted by Σ∗ and it is a free monoid. The empty word is denoted by ε and the
length of a word w ∈ Σ∗ by |w|.

The set of all infinite words over Σ is denoted by Σω. An infinite word w is
ultimately periodic if there are words u, v ∈ Σ∗ such that w = uvω = uvvv · · · .
If w is not ultimately periodic, it is aperiodic.

The set of factors of a finite or infinite word w is denoted by Fact(w) and the
set of prefixes by Pref(w).

If a1, . . . , an ∈ Σ, then the reverse of the word w = a1 · · · an is wR = an · · · a1.
If w = wR, then w is a palindrome.



Palindromic Length in Free Monoids and Free Groups 3

The palindromic length of a word w, denoted by |w|pal, is the smallest number
n such that w can be written as a product of n palindromes. Because every letter
is a palindrome, |w|pal ≤ |w|. The palindromic length of ε is zero, the palindromic
length of every nonempty palindrome is one, and the palindromic length of every
other word is at least two.

Example 3. The reverse of the word reverses is sesrever, so it is not a palindrome.
It is a product of the two palindromes rever and ses, so its palindromic length
is two.

The palindromic width of a language L is

|L|pal = sup{|u|pal | u ∈ L}

(this terminology actually comes from studying palindromicity in groups; the
case of free groups is discussed below). Conjecture 1 can now be reformulated
as claiming that |Fact(w)|pal = ∞ for every aperiodic infinite word w, and
Conjecture 2 can be reformulated as claiming that |Pref(w)|pal = ∞ for every
aperiodic infinite word w.

The free monoid Σ∗ can be extended to a free group. For any subset S of the
free group, let S∗ be the monoid generated by S, let S−1 be the set of inverses
of elements of S, and let S±1 = S ∪ S−1. For example, (Σ±1)∗ is the whole free
group, and (Σ∗)±1 is the set of all words and their inverses. The term “word”
always refers to an element of Σ∗.

Every element x of the free group (Σ±1)∗ can be written uniquely in a
reduced form x = a1 · · · an, where n ≥ 0, a1, . . . , an ∈ Σ±1, and ai−1ai 6= ε for
all i ∈ {2, . . . , n}. The reverse of x is then xR = an · · · a1. This is an extension of
the definition of the reverse of a word. If x = xR, then x is an FG-palindrome. A
word is an FG-palindrome if and only if it is a palindrome.

Reversal is an antimorphism, that is, (xy)R = yRxR for all x, y ∈ (Σ±1)∗.
It follows that if x = a0 · · · an, where a0, . . . , an ∈ Σ±1 (but not necessarily
ai−1ai 6= ε for all i ∈ {1, . . . , n}), and if ai = an−i for all i ∈ {0, . . . , n}, then x
is an FG-palindrome. The converse is not true; for example, the empty word is
an FG-palindrome, but it can be written as aa−1, which does not “look like” a
palindrome.

The FG-palindromic length of an element x is the smallest number n such
that x can be written as a product of n FG-palindromes. This definition is not
compatible with the definition of palindromic length, because there are words
whose palindromic length is larger than their FG-palindromic length.

Example 4. The palindromic length of abca is four, but it is a product of three
FG-palindromes:

abca = aba · a−2 · aca.

When studying palindromicity in free groups (and not in free monoids),
FG-palindromes are usually called just palindromes, but in this article, the
term “palindrome” always refers to a word. Similarly, FG-palindromic length is
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sometimes called just palindromic length, but because it is different from the
usual palindromic length of words, it is important to use different terms in this
article.

3 Palindromic Lengths of Factors and Prefixes

We start with an easy lemma, which was also proved in [12]. Lemmas of similar
flavor can be found in [4].

Lemma 5. Let x, y ∈ Σ∗. If two of the words x, y, xy are palindromes, then
the third one is a product of two palindromes.

Proof. If x and y are palindromes, then the claim is clear.
If x and xy are palindromes, then xy = (xy)R = yRxR = yRx, so y and yR

are conjugates, meaning that there are words p, q such that y = pq and yR = qp.
Then qp = yR = (pq)R = qRpR, so q = qR and p = pR, and thus y = pq is a
product of two palindromes.

If y and xy are palindromes, then the claim can be proved in a symmetric
way. Alternatively, we can notice that yR and yRxR are palindromes, so xR is
a product of two palindromes by the previous case, and therefore also x is a
product of two palindromes. ut

If x is a product of m palindromes and y is a product of n palindromes,
then xy is a product of m+ n palindromes, so we have the inequality |xy|pal ≤
|x|pal + |y|pal. The following generalization of Lemma 5 gives two other similar
“triangle inequalities” for palindromic length.

Lemma 6. Let x, y ∈ Σ∗. Then

|y|pal ≤ |x|pal + |xy|pal and |x|pal ≤ |y|pal + |xy|pal.

Proof. We prove the first inequality by induction on |xy| (the second inequality
is symmetric). The cases where |x| = 0 or |y| = 0 are clear. Let us assume that
|x|, |y| > 0 and |y′|pal ≤ |x′|pal + |x′y′|pal whenever |x′y′| < |xy|. Let |x|pal = m
and |xy|pal = n. Let x = p1 · · · pm and xy = q1 · · · qn, where every pi and every
qi is a nonempty palindrome. There are two (similar) cases: |p1| ≤ |q1| and
|p1| > |q1|.

If |p1| ≤ |q1|, then q1 = p1r for some word r, and r = st for some palindromes
s, t by Lemma 5. Let x′ = p2 · · · pm. Then x′y = stq2 · · · qn. By the induction
hypothesis,

|y|pal ≤ |x′|pal + |x′y|pal ≤ (m− 1) + (n+ 1) = |x|pal + |xy|pal.

If |p1| > |q1|, then p1 = q1r for some word r, and r = st for some palindromes
s, t by Lemma 5. Let x′ = stp2 · · · pm. Then x′y = q2 · · · qn. By the induction
hypothesis,

|y|pal ≤ |x′|pal + |x′y|pal ≤ (m+ 1) + (n− 1) = |x|pal + |xy|pal.

This completes the induction. ut
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Now we are ready to prove the main result of this section and the equivalence
of Conjectures 1 and 2.

Theorem 7. Let w be a finite or infinite word. Then

|Fact(w)|pal ≤ 2|Pref(w)|pal.

Proof. Let y be any factor of w. There is a word x such that xy is a prefix of w.
Then |x|pal, |xy|pal ≤ |Pref(w)|pal, and

|y|pal ≤ |x|pal + |xy|pal ≤ 2|Pref(w)|pal

by Lemma 6. ut

Corollary 8. Conjectures 1 and 2 are equivalent.

Proof. For an aperiodic infinite word w, the condition |Pref(w)|pal =∞ implies
|Fact(w)|pal =∞, because Pref(w) ⊆ Fact(w), and the condition |Fact(w)|pal =
∞ implies |Pref(w)|pal =∞ by Theorem 7. Therefore Conjectures 1 and 2 are
equivalent. ut

The next example shows that the inequality |Fact(w)|pal ≤ 2|Pref(w)|pal in
Theorem 7 is almost optimal. We do not know whether it could be replaced by
|Fact(w)|pal ≤ 2|Pref(w)|pal − 1.

Example 9. Let {a1, . . . , an−1, b1, . . . , bn−1} be an alphabet and let

A = a1 · · · an−1 and B = b1 · · · bn−1.

It is quite easy to see that all prefixes of the infinite word

w = (AARBBR)ω = ((a1 · · · an−1)(an−1 · · · a1)(b1 · · · bn−1)(bn−1 · · · b1))ω

have palindromic length at most n. On the other hand, w has the factor

u = ARBBRAARB

= (an−1 · · · a1)(b1 · · · bn−1)(bn−1 · · · b1)(a1 · · · an−1)(an−1 · · · a1)(b1 · · · bn−1),

and we can show that u has palindromic length 2n−1. To see this, let u = p1 · · · pk,
where every pi is a palindrome. We first note that u contains every letter exactly
three times. Every letter appears an even number of times in every palindrome
of even length, so every letter must appear in at least one pi of odd length. But
u does not contain a factor of the form aba for any letters a, b, so it does not
have palindromic factors of odd length, except the letters. Therefore, for every
letter a, there exists i such that pi = a. This means that the sequence p1, . . . , pk
contains at least 2n− 2 letters. It follows that k ≥ 2n− 1.
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4 Binary Alphabet

In Example 9, we used an alphabet whose size depended on the parameter n.
This raises the question of whether similar examples could be constructed using
an alphabet of fixed sized, preferably a binary alphabet. It would be convenient
if, for any alphabet {a1, . . . , an}, we could give a morphism h : {a1, . . . , an}∗ →
{a, b}∗ that preserves palindromic lengths of words, and approximately preserves
palindromic widths of sets of factors and prefixes. Then we could use this
morphism also later to turn n-ary examples into binary ones. The first idea might
be to define h(ai) = abia for all i. This morphism preserves palindromicity, but
it can significantly reduce the palindromic length of a word. A better morphism
is given in the next lemma.

Lemma 10. Let us define a morphism

h : {a1, . . . , an}∗ → {a, b}∗, h(ai) = abia5bia.

Let u be a finite word and w a finite or infinite word over {a1, . . . , an}. Then

|h(u)|pal = |u|pal,
|Fact(w)|pal ≤ |Fact(h(w))|pal ≤ |Fact(w)|pal + 6,

|Pref(w)|pal ≤ |Pref(h(w))|pal ≤ |Pref(w)|pal + 3.

Proof. First, we prove that |h(u)|pal ≤ |u|pal. If u = p1 · · · pk, where every pi is
a palindrome, then h(u) = h(p1) · · ·h(pk) and every h(pi) is a palindrome. The
claim follows.

Second, we prove that |u|pal ≤ |h(u)|pal. Let h(u) = q1 · · · qk, where every qi
is a palindrome. We are going to define a factorization u = p1 · · · pk such that
every pi is a palindrome. The informal idea is to define the words pi so that, for
a letter c in u, if the centermost letter in the image h(c) is inside qj , then c will
be inside pj . This means that either |pj | ≤ 1 or qj = xh(pj)y, where x is either
a suffix of a2bia or the inverse of a prefix of abia2 for some i, and y is either a
prefix of abia2 or the inverse of a suffix of a2bia for some i. If pj = aj0 · · · ajm ,
where m ≥ 1 and ji ∈ {1, . . . , n} for all i, then

qj = x′a3bj0a

(m−1∏
i=1

abjia5bjia

)
abjma3y′,

where x′, y′ ∈ {a, b}∗ do not contain a3 as a factor. Because qj is a palindrome,
it must be ji = jm−i for all i, so also pj is a palindrome. The claim follows.

Third, we prove that

|Fact(w)|pal ≤ |Fact(h(w))|pal

If v is a factor of w of palindromic length k, then h(v) is a factor of h(w) of
palindromic length k. The claim follows.
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Finally, we prove that

|Fact(h(w))|pal ≤ |Fact(w)|pal + 6.

Every factor of h(w) is of the form xh(v)y, where v is a factor of w, x is a suffix
of abia5bia for some i, and y is a prefix of abia5bia for some i. Then

|xh(v)y|pal ≤ |x|pal + |h(v)|pal + |y|pal ≤ |v|pal + 6.

The claim follows.
The inequalities about the sets of prefixes can be proved in a similar way. ut

Example 11. If w is the word of Example 9 and h is the morphism of Lemma 10,
then the palindromic lengths of all prefixes of the binary infinite word h(w) are
at most n+ 3, but h(w) has a factor of palindromic length 2n− 1.

5 Palindromic Jumps

In this section, we are going to prove a generalization of Lemma 6, which might
be useful when studying palindromic lengths of factors. Let w = a0a1a2 · · · (w
could also be a finite word). In the following, it is convenient to think that the
positions between the letters of w are labeled so that the position before a0 is 0,
the position between a0 and a1 is 1, and so on. We say that (i, j) is a palindromic
jump in w if either i ≤ j and ai · · · aj−1 is a palindrome or j ≤ i and aj · · · ai−1
is a palindrome. If i ≤ j, then (i, j) is a forward palindromic jump, and if j ≤ i,
then (i, j) is a backward palindromic jump.

If we can get from position i to position j with n forward palindromic jumps,
then the factor between positions i and j is a product of n palindromes. The
inequality |y|pal ≤ |x|pal + |xy|pal in Lemma 6 means that if we can get from
position |x| in the word xy to position 0 with m backward palindromic jumps,
and we can get from position 0 to position |xy| with n forward palindromic
jumps, then we can get from position |x| to position |xy| with m + n forward
palindromic jumps. It follows that any sequence of m backward palindromic
jumps followed by n forward palindromic jumps can be converted into a sequence
of m+ n forward palindromic jumps. In the following theorem, we will generalize
this by proving that any sequence of n palindromic jumps can be converted into
a sequence of n forward palindromic jumps. So if we can get from position i to
position j with n palindromic jumps, then the factor between positions i and j
has palindromic length at most n.

Theorem 12. Let w = a0a1a2 · · · . Let k0, . . . , kn ≥ 0 and k0 ≤ kn. If (ki−1, ki)
is a palindromic jump in w for all i ∈ {1, . . . , n}, then ak0

· · · akn−1 is a product
of n palindromes.

Proof. We can assume that ki−1 6= ki for all i ∈ {1, . . . , n}. The proof is by
induction on L = |k0 − k1|+ · · ·+ |kn−1 − kn|. If L = kn − k0, then the sequence
k0, . . . , kn is increasing and the claim is clear. Let us assume that L > kn − k0
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and that the claim is true for all values smaller than L. There is a number j
such that either kj < kj−1, kj+1 or kj > kj−1, kj+1. By Lemma 5, there is a
number k such that (kj−1, k), (k, kj+1) are palindromic jumps in w and either
kj−1 ≤ k ≤ kj+1 or kj+1 ≤ k ≤ kj−1. Let k′j = k and k′i = ki for all i 6= j. Then
|k′0 − k′1|+ · · ·+ |k′n−1 − k′n| < L and every (k′i−1, k

′
i) is a palindromic jump in w,

so ak0 · · · akn is a product of n palindromes by the induction hypothesis. ut

Example 13. Consider the word abaca. Then (0, 3) is a forward palindromic jump,
because aba is a palindrome, (3, 2) is a backward palindromic jump, because
a is a palindrome, and (2, 5) is a forward palindromic jump, because aca is a
palindrome. By Theorem 12, abaca is a product of three palindromes, which is of
course very easy to see directly as well. The proof of Theorem 12 would convert
the sequence (0, 3), (3, 2), (2, 5) of palindromic jumps either into the sequence
(0, 1), (1, 2), (2, 5), which corresponds to the factorization a · b · aca, or to the
sequence (0, 3), (3, 4), (4, 5), which corresponds to the factorization aba · c · a.

6 Palindromes and Inverses of Palindromes

From now on, we view the word monoid Σ∗ as a subset of the free group (Σ±1)∗. If
x, y ∈ Σ∗, then y = x−1xy, so the inequality |y|pal ≤ |x|pal + |xy|pal of Lemma 6
can be formulated as follows: If y = p1 · · · pmq1 · · · qn, where every pi is the
inverse of a palindrome and every qi is a palindrome, then y is a product of m+n
palindromes. This raises the following questions:

– If a word is a product of n elements of (Σ∗)±1 that are palindromes or
inverses of palindromes, is the word necessarily a product of n palindromes?

– If a word is a product of n FG-palindromes, is the word necessarily a product
of n palindromes?

The answer to both of these questions is negative, as is shown by the word

abca = aba · a−2 · aca,

which was already mentioned in Example 4. However, in Theorem 14 we prove a
weaker result. This is essentially a reformulation of Theorem 12. We could also
have proved Theorem 14 first and then Theorem 12 as a consequence.

Theorem 14. Let w = p1 · · · pn, where w is a word and every pi is either
a palindrome or the inverse of a palindrome. If pi · · · pj ∈ (Σ∗)±1 whenever
1 ≤ i ≤ j ≤ n, then w is a product of n palindromes.

Proof. For all i ∈ {0, . . . , n}, let qi = p1 · · · pi. Let R = {qi | qi ∈ Σ∗} and
S = {q−1i | q−1i ∈ Σ∗}. Let r be a longest word in R and s be a longest word in
S.

First we are going to show that every qi ∈ R is a prefix of r. If qi = xay and
qj = xbz, where x, y, z are words, a, b are different letters, and i < j, then

pi+1 · · · pj = q−1i qj = y−1a−1bz /∈ (Σ∗)±1,
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which is a contradiction. Therefore, one of qi, qj is a prefix of the other. This
means that every qi ∈ R is a prefix of r.

Then we are going to show that every q−1i ∈ S is a suffix of s. If q−1i = xaz
and q−1j = ybz, where x, y, z are words, a, b are different letters, and i < j, then

pi+1 · · · pj = q−1i qj = xab−1y−1 /∈ (Σ∗)±1,

which is a contradiction. Therefore, one of q−1i , q−1j is a suffix of the other. This

means that every q−1i ∈ S is a suffix of s.
Let w = sr. Then (|sqi−1|, |sqi|) is a palindromic jump in w for all i ∈

{1, . . . , n}. The claim follows from Theorem 12. ut

7 Conjugates and Edit Distance

In this section, we will compare palindromic length and FG-palindromic length
and show that they can be very different. We prove that FG-palindromic length
has some nice properties that the ordinary palindromic length does not have: The
FG-palindromic lengths of conjugates are almost the same, and if two elements are
close to each other as measured by edit distance, then also their FG-palindromic
lengths are close to each other.

Theorem 15. For every conjugacy class of a free group, there is a number k
such that the FG-palindromic lengths of all elements in the conjugacy class are
in {2k − 1, 2k}.

Proof. Of all the members of a conjugacy class, let x be one with minimal FG-
palindromic length. Let k be such that the FG-palindromic length of x is in
{2k − 1, 2k}. Then x = p1 · · · p2k, where every pi is an FG-palindrome (we can
add the empty palindrome if necessary). For every conjugate yxy−1 of x we have

yxy−1 = y(p1 · · · p2k)y−1 =

k∏
i=1

yp2i−1p2iy
−1 =

k∏
i=1

yp2i−1y
R(yR)−1p2iy

−1.

Here the two elements yp2i−1y
R and (yR)−1p2iy

−1 = (y−1)Rp2iy
−1 are FG-

palindromes for all i ∈ {1, . . . , k}, so yxy−1 is a product of 2k FG-palindromes.
This proves the claim. ut

All conjugates of a product of two palindromes are also products of two
palindromes, but a conjugate of a product of three palindromes can have arbi-
trarily high palindromic length, as is shown in the next example. This means
that Theorem 15 does not hold for palindromic length.

Example 16. Let {a1, . . . , an, b, c} be an alphabet and let A = a1 · · · an. The
word

ARAbc = (an · · · a1)(a1 · · · an)bc
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has palindromic length three, but its conjugate

AbcAR = (a1 · · · an)bc(an · · · a1)

has palindromic length 2n+ 2. On the other hand, Theorem 15 guarantees that
AbcAR is a product of four FG-palindromes. In fact, it is a product of three
FG-palindromes:

AbcAR = AbAR · (AR)−1A−1 ·AcAR.

This also shows that the ratio of the palindromic length and the FG-palindromic
length of a word can be arbitrarily large.

The edit distance (or Levenshtein distance) of two words can be defined as
the smallest number of deletions, insertions and substitutions of letters that are
required to transform the first word into the second word. A similar definition can
be given for elements of a free group. Formally, we define the FG-edit distance of
x, y ∈ (Σ±1)∗ as follows:

– If x = y, the FG-edit distance is zero.
– If x = uav 6= y = ubv, where u, v ∈ (Σ±1)∗ and a, b ∈ Σ±1∪{ε}, the FG-edit

distance is one.
– Otherwise, the FG-edit distance is the smallest number n for which there are
x0, . . . , xn ∈ (Σ±1)∗ such that x0 = x, xn = y, and the edit distance of xi−1
and xi is one for all i ∈ {1, . . . , n}.

The FG-edit distance of two words can be smaller than their ordinary edit
distance. For example, the edit distance of ε and ab is two, but the FG-edit
distance of ε = aa−1 and ab is one.

Next we will prove that if two elements are close to each other as measured
by FG-edit distance, then also their FG-palindromic lengths are close to each
other. The idea is that if we want to make a deletion, insertion or substitution
in the middle of an element, we can first take a suitable conjugate, then make
the deletion, insertion or substitution at the end of the element, and finally
take another suitable conjugate. None of these operations can change the FG-
palindromic length by much.

Theorem 17. If the FG-edit distance of x and y is d, then the difference of
their FG-palindromic lengths is at most 2d+ 1.

Proof. First, consider the case d = 1. Let x = uav and y = ubv, where u, v ∈
(Σ±1)∗ and a, b ∈ Σ±1∪{ε}. Let the FG-palindromic length of x be 2k− l, where
l ∈ {0, 1}. Then the FG-palindromic length of vua is at most 2k by Theorem 15,
the FG-palindromic length of vub = vua · a−1 · b is at most 2k + 2, and the
FG-palindromic length of ubv is at most 2k + 2 by Theorem 15. This proves the
claim for d = 1. The general case follows by iterating the above procedure. ut

The next example shows that Theorem 17 does not hold for palindromic
length.
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Example 18. Consider the word AbcAR that appeared in Example 16. It is within
edit distance one of a palindrome, but its palindromic length is 2n+2. On the other
hand, Theorem 17 guarantees that AbcAR is a product of four FG-palindromes.
In fact, it is a product of three FG-palindromes, as we saw in Example 16.

8 Conclusion

In this article, we have studied palindromic length. In free monoids, we have
compared the maximal palindromic lengths of factors and prefixes, proved the
equivalence of two well-known conjectures, and given alternative equivalent ways
to define palindromic length. In free groups, we have studied the relations between
palindromic length, FG-palindromic length, conjugates, and edit distance. There
are many open questions:

– Conjecture 1 remains open.
– The fact that the FG-palindromic length of a word can be much smaller than

the palindromic length suggests the following question: Does there exist an
aperiodic infinite word such that the FG-palindromic lengths of its factors
are bounded by a constant?

– There are several small questions about the optimality of various results. For
example, are there words such that all of their prefixes have palindromic
length at most n but some of their factors have palindromic length 2n? In
the binary case, can we do better than using Lemma 10?

– We could also look at combinatorial and algorithmic questions related to FG-
palindromic length. Finding an algorithm for determining the FG-palindromic
length was mentioned as an open problem already in [3].
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