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1 Introduction

This work concerns combinatorics on words, or more precisely the theory of
word equations. Fundamental results of this topic include the decidability of
the satisfiability problem for word equations, see [9], and the compactness
result of systems of word equations, see [1] and [5]. The first result was
improved to a PSPACE algorithm in [10].

In the case of constant-free word equations with only three unknowns
fundamental results have also been achieved. Hmelevskii [7] proved in 1970
that the general solution of any such equation can be expressed as a finite
formula on word and numerical parameters. On other direction Spehner
[11, 12] classified all sets of relations a given solution, that is a triple of words,
can satisfy. Both of these results have only very complicated proofs. Another
example of a challenging nature of word problems is that the question of
finding any upper bound for the maximal size of independent system of
word equations on three unknowns is still open, see [6] and [3].

The result of Hmelevskii is well known, see e.g. [8], but a readable
presentation seems to be lacking. This work attempts to give a simplified
proof using modern tools of combinatorics on words. As a new result, we
get an upper bound of the size of the formula giving the general solution.
This bound is double exponential in terms of the length of the equation, and
thus very probably far from optimal.

This work begins in section 2 with some definitions and well-known the-
orems. Then some simple equations, which will be used later, are solved. In
section 3 we define parametric words and parametric solutions formally and
present some very basic properties of them, and in section 4 we take a closer
look at the form of parametric solutions. Section 5 deals with exponential
equations, which are an important tool used in our proof. In section 6 we
are able to prove Hmelevskii’s theorem for a large class of equations. All
other equations will be reduced to these equations later on. The main tools
in this process are images and θ-images, which are the topic of section 7.
Finally, in the last three sections a so called basic tree is constructed for an
arbitrary equation, and this completes the proof of Hmelevskii’s theorem.
An upper bound for the height of such a tree gives an upper bound for the
length of the parametric solution.

2 Definitions and basic results

In this section we fix the terminology and state the basic auxiliary results
needed, for more see [2].

We consider word equations U = V , where U, V ∈ Ξ∗ and Ξ is the
alphabet of unknowns. A morphism h : Ξ∗ → Σ∗ is a solution of this
equation, if h(U) = h(V ). We also consider one-sided equations xU ⇉ yV .
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A morphism h : Ξ∗ → Σ∗ is a solution of this equation, if h(xU) = h(yV )
and |h(x)| ≥ |h(y)|.

A solution h is periodic, if there exists such t ∈ Σ∗ that every h(x),
where x ∈ Ξ, is a power of t. Otherwise h is nonperiodic. Periodic solutions
are easy to find and represent, so in many cases it is enough to consider
nonperiodic solutions.

A word w is primitive, if it is not of the form tn, where t 6= w and n ≥ 2.
Every word w can be represented uniquely as tn with t primitive; then t is
the primitive root of w and the notation t = ρ(w) is used.

If a word u is a prefix of a word v, that is v = uw for some w, the
notation u ≤ v is used. If also u 6= v, then u is a proper prefix and the
notation u < v is used.

Let w = a1 . . . an. Its reverse is wR = an . . . a1, and its length is |w| = n.
The number of occurrences of a letter a in w is denoted by |w|a.

If Σ = {a1, . . . , an}, then U ∈ Σ∗ can be denoted U(a1, . . . , an), and
its image under a morphism h can be denoted h(U) = U(h(a1), . . . , h(an)).
If u ∈ Σ∗, then the morphism a1 7→ u means the morphism, which maps
a1 7→ u and ai 7→ ai, when i = 2, . . . , n.

The following theorems and lemmas give solutions to some simple equa-
tions. These solutions will be the basis of parametric solutions of all equa-
tions with three unknowns. We start with the well known lemmata, see
[2].

Theorem 2.1 (Commutation). Let U, V ∈ {x, y}∗ and U 6= V . Assume
that |U |x = a, |U |y = b, |V |x = c and |V |y = d. The solutions of the
equation U = V are x = ti, y = tj, where t ∈ Σ∗, ai + bj = ci + dj and
i, j ≥ 0.

Theorem 2.2 (Conjugation). The solutions of the equation xz = zy are
x = pq, y = qp, z = p(qp)i or x = y = 1, z = p, where p, q ∈ Σ∗ and i ≥ 0.

Theorem 2.3 (Fine and Wilf). Let u, v ∈ Σ+, u′ < u, v′ < v and

|umu′| = |vnv′| ≥ |u| + |v| − gcd(|u|, |v|).

Now umu′ = vnv′ if and only if uv = vu.

For the next theorem we define the graph of a system of equations. It
is a graph, whose vertices are the unknowns of the system, and where two
vertices x and y are connected by an edge, if the system contains an equation
of the form x . . . = y . . ..

Theorem 2.4 (Graph lemma). Let E be a system of equations and assume
that its graph has c connected components. Let Ξ = {x1, . . . , xn} and let
h : Ξ∗ → Σ+ be a solution of E. Now there exists a set F ⊂ Σ+ with c
elements such that h(x1), . . . , h(xn) ∈ F ∗.
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The above theorem has the following corollary, which suits particularly
well to our considerations.

Corollary 2.5. Let A,B,C,D ∈ {x, y, z}∗. Each solution h of the system
of equations xA = yB, xC = zD, for which h(x), h(y), h(z) 6= 1, is periodic.

We continue by solving a few examples of word equations needed in our
presentation.

Lemma 2.6. The nonperiodic solutions of the equation xyz = zyx are
x = (pq)ip, y = q(pq)j, z = (pq)kp, where p, q ∈ Σ∗, i, j, k ≥ 0, pq 6= qp and
pq can be assumed to be primitive.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If
h is a nonperiodic solution, then h(xyzy) = h(zyxy), so h(xy) = tm and
h(zy) = tn, where t is primitive and m,n > 0. Now h(y) = q(pq)j , where
pq = t and 0 ≤ j < m,n, so h(x) = (pq)ip and h(z) = (pq)kp, where
i = m − j − 1 and k = n − j − 1. If p and q would commute, the solution
would be periodic.

Lemma 2.7. The nonperiodic solutions of the equation xyz = zxy are
x = (pq)ip, y = q(pq)j, z = (pq)k, where p, q ∈ Σ∗, i, j, k ≥ 0 and pq 6= qp.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If h is
a nonperiodic solution, then h(xy) = tm and h(z) = tk, where m > 0, k ≥ 0.
Now h(y) = q(pq)j, where pq = t and 0 ≤ j < m, so h(x) = (pq)ip and
h(z) = (pq)k, where i = m − j − 1. If p and q would commute, the solution
would be periodic.

Lemma 2.8. Let a ≥ 2. The nonperiodic solutions of the equation xzx = ya

are x = (pq)ip, y = (pq)i+1p, z = qp((pq)i+1p)a−2pq, where p, q ∈ Σ∗, i ≥ 0
and pq 6= qp.

Proof. The claimed solutions satisfy the equation and are nonperiodic. Let
h be a nonperiodic solution. If it would be |h(x)| ≥ |h(y)|, then h(xz) and
h(y) would be powers of a common word by Theorem 2.3, and h would be
periodic. Thus |h(x)| < |h(y)|. Now h(y) = uh(x) = h(x)v, where u, v 6= 1,
and h(z) = vh(y)a−2u. By Theorem 2.2, u = pq, v = qp, h(x) = (pq)ip,
h(y) = (pq)i+1p and h(z) = qp((pq)i+1p)a−2pq. If p and q would commute,
the solution would be periodic.

Lemma 2.9. Let a ≥ 2. The nonperiodic solutions of the equation xyaz =
zyax are x = (pqa)ip, y = q, z = (pqa)jp or











x = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)i,

y = (pq)k+1p,

z = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)j ,

where p, q ∈ Σ∗, i, j, k ≥ 0 and pq 6= qp.
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Proof. The claimed solutions satisfy the equation and are nonperiodic. If h
is a nonperiodic solution, then, by Lemma 2.6,

h(x) = u(vu)i, h(ya) = v(uv)b, h(z) = u(vu)j ,

where uv is primitive. If b = 0, this gives a solution of the first form. If
b > 1, then, by Theorem 2.3, hy and vu commute. Then u = 1 or v = 1 and
h(x), h(y), h(z) ∈ (uv)∗, which is a contradiction. If b = 1, then, by Lemma
2.8, h(v) = (pq)kp, h(y) = (pq)k+1p and h(u) = qp((pq)k+1p)a−2pq. This
gives a solution of the second form. If p and q would commute, the solution
would be periodic.

Lemma 2.10. The nonperiodic solutions of the equation xyxz ⇉ zx2y are
x = (pq)ip, y = qp((pq)i+1p)jpq, z = pq, where p, q ∈ Σ∗, i ≥ 1, j ≥ 0 and
pq 6= qp.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If h
is a nonperiodic solution, then, by Lemma 2.6,

h(xy) = (uv)bu, h(x) = v(uv)c, h(z) = (uv)du.

Because h(z) ≤ h(x) ≤ h(xy) and uv 6= vu, it must be h(z) = u ≤ h(x) =
v ≤ uv. Now h(z) = pq and h(x) = (pq)ip, so y = qp((pq)i+1p)jpq. If p and
q would commute, the solution would be periodic.

Lemma 2.11. Let a, b ≥ 1 and U, V ∈ Ξ∗. If h is a solution of the equation
xayU = ybxV , then h(x) and h(y) commute.

Proof. Assume that h(x) ≤ h(y). Then h(y) = h(x)ct, where h(x) � t.
Because h(x)a+c . . . = h(x)ct . . ., it must be t ≤ h(x). Now h(x)a+ct . . . =
h(y)bh(x) . . . and |h(x)a+ct|, |h(y)bh(x)| ≥ |h(x)h(y)|. The claim follows by
Theorem 2.3.

3 Parametric words

In this section, we define the central notions of this presentation, namely
parametric words, parameterizability and parametric solutions.

Fix the alphabet of word parameters ∆ and the set of numerical param-
eters Λ. Now parametric words are defined inductively as follows:

(i) if a ∈ ∆ ∪ {1}, then (a) is a parametric word,

(ii) if α and β are parametric words, then so is (αβ),

(iii) if α is a parametric word and i ∈ Λ, then (αi) is a parametric word.
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The set of parametric words is denoted by P(∆,Λ). The sets of parameters
are always denoted by ∆ and Λ.

When there is no danger of confusion, unnecessary parenthesis can be
omitted and notations like αiαj = αi+j and (αi)j = αij can be used. Then
parametric words form a monoid, if the product of α and β is defined to be
αβ.

If f is a function Λ → N0, we can abuse the notation and use the same
symbol for the function, which maps parametric words by giving values
for the numerical parameters with f : if a ∈ ∆ ∪ {1}, then f((a)) = a; if
α, β ∈ P(∆,Λ), then f((αβ)) = f(α)f(β); if α ∈ P(∆,Λ) and i ∈ Λ, then
f((αi)) = f(α)f(i). A parametric word is thus mapped by f to a word of
∆∗. This can be further mapped by a morphism h : ∆∗ → Σ∗ to a word of
Σ∗. The mapping h ◦ f is a valuation of a parametric word into Σ∗, and f
is its valuation to the set ∆∗.

We define the length of a parametric word: the length of 1 is zero; if
a ∈ ∆, then the length of a is one; if α, β ∈ P(∆,Λ), then the length of αβ
is the sum of lengths of α and β; if α ∈ P(∆,Λ) r {1} and i ∈ Λ, then the
length of αi is the length of α plus one.

Next we define the height of a parametric word: if a ∈ ∆∪{1}, then the
height of a is zero; if α, β ∈ P(∆,Λ), then the height of αβ is the maximum
of heights of α and β; if α ∈ P(∆,Λ)r{1} and i ∈ Λ, then the height of αi is
the height of α plus one. Parametric words of height zero can be considered
to be words of ∆∗.

A linear Diophantine relation R is a disjunction of systems of linear
Diophantine equations with lower bounds for the unknowns. For example,

((x + y − z = 0) ∧ (x ≥ 2)) ∨ ((x + y = 3) ∧ (x + z = 4))

is a linear Diophantine relation over the unknowns x, y and z. We are only
interested in the nonnegative values of the unknowns. If Λ = {i1, . . . , ik},
f is a function Λ → N0, and f(i1), . . . , f(ik) satisfy R, then the notation
f ∈ R can be used.

Let S be a set of morphisms Ξ∗ → Σ∗, Λ = {i1, . . . , ik}, hj a morphism
from the monoid Ξ∗ to parametric words and Rj a linear Diophantine re-
lation, when j = 1, . . . ,m. The set {(hj , Rj) : 1 ≤ j ≤ m} is a parametric
representation of S, if

S = {h ◦ f ◦ hj : 1 ≤ j ≤ m, f ∈ Rj} ,

where h ◦ f runs over all valuations to Σ∗. The linear Diophantine relations
are not strictly necessary, but they make some proofs easier. A set can
be parameterized, if it has a parametric representation. The length of the
parametric representation is the sum of the lengths of all hj(x), where j =
1, . . . ,m and x ∈ Ξ.
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It follows immediately that if two sets can be parameterized, then also
their union can be parameterized.

Let S, S1, . . . , Sn be sets of morphisms Ξ∗ → Σ∗. The set S can be
parameterized in terms of the sets S1, . . . , Sn, if there exists such morphisms
h1, . . . , hn from Ξ∗ to P(Ξ,Λ) that

S = {g ◦ f ◦ hj : 1 ≤ j ≤ n, g ∈ Sj} ,

where f runs over functions Λ → N0.
Again it is a direct consequence of the definitions that the parameteriz-

ability is preserved in compositions. Namely, if S can be parameterized in
terms of the sets S1, . . . , Sn and every Si can be parameterized in terms of
the sets Si1, . . . , Sini

, then S can be parameterized in terms of the sets Sij.
We conclude these definitions by saying that solutions of an equation

can be parameterized, if the set of its all solutions can be parameterized. A
parametric representation of this set is a parametric solution of the equation.

These definitions can be generalized in an obvious way for systems of
equations. Theorems 2.1 and 2.2 and Lemmas 2.6 – 2.10 give parametric
solutions for some equations. For example, the conjugate equation xz = zy
has a parametric solution {(h1, R), (h2, R)}, where ∆ = {p, q}, Λ = {i},
h1(x) = pq, h1(y) = qp, h1(z) = p(qp)i, h2(x) = h2(y) = 1, h2(z) = p and R
is the trivial relation satisfied by all functions f : Λ → N0.

The following theorem states that the basic tool in solving equations,
namely the cancellation of the first variable, preserves the parameterizability
of solutions.

Theorem 3.1. Let U, V ∈ Ξ∗, x, y ∈ Ξ and x 6= y. Let h : Ξ∗ → Ξ∗ be the
morphism x 7→ yx. If the equation xh(U) = h(V ) has a parametric solution,
then so does the equation xU ⇉ yV .

Proof. If the equation xh(U) = h(V ) has a parametric solution

{(hj , Rj) : 1 ≤ j ≤ m} ,

then the equation xU ⇉ yV has the parametric solution

{(hj ◦ h,Rj) : 1 ≤ j ≤ m} .

4 Remarks about parametric solutions

A parametric solution was defined as a set {(hj , Rj) : 1 ≤ j ≤ m}. This
solution can be written less formally as

x = h1(x), y = h1(y), z = h1(z), R1 or

...

x = hm(x), y = hm(y), z = hm(z), Rm,
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if the unknowns are x, y, z. Actually, only one pair (h,R) is needed. For
example, if we have a parametric solution

x = α1, y = β1, z = γ1 or x = α2, y = β2, z = γ2,

we can replace it with

x = αi
1α

j
2, y = βi

1β
j
2, z = γi

1γ
j
2, i + j = 1,

where i and j are new parameters.
On the other hand, the linear Diophantine relations are not necessary

either, if we again allow many morphisms. We can get rid of the relations
by replacing every pair (h,R) with several morphisms h. This follows from
article [4]. We will not give the proof here, but present an example.

Example 4.1. Consider the periodic solutions of the equation xn = yz.
They are

x = ti, y = tj, z = tk, ni = j + k.

We can replace j with nj′ + b and k with nk′ + c, where 0 ≤ b, c < n. Then
i = j′ + k′ + (b + c)/n. Only those pairs (b, c) for which b + c is divisible by
n are possible. Thus we get a representation

x = tj
′+k′

, y = tnj′ , z = tnk′

or

x = tj
′+k′+1, y = tnj′+1, z = tnk′+n−1 or

x = tj
′+k′+1, y = tnj′+2, z = tnk′+n−2 or

...

x = tj
′+k′+1, y = tnj′+n−1, z = tnk′+1,

where the parameters j′, k′ can now have any nonnegative values.

The periodic solutions of an equation on three unknowns can be repre-
sented with just one morphism and without any Diophantine relations.

Theorem 4.2. The periodic solutions of an equation U = V have a repre-
sentation

x = tp, y = tq, z = tr,

where p, q, r are polynomials of numerical parameters

Proof. All periodic solutions of an equation U = V are of the form x =
ti, y = tj , z = tk, and the exponents i, j, k must satisfy the constraint |U |xi+
|U |yj + |U |zk = |V |xi + |V |yj + |V |zk. By permuting the unknowns we can
assume that this can be written as ai = bj+ck, where a, b, c are nonnegative
integers and a > 0 (except for some trivial cases). Let (bn, cn)Nn=1 be a
sequence of all solutions (u, v) ∈ {0, . . . , a−1}2 of the congruence bu+cv ≡ 0
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(mod a). For each pair (bn, cn), we could define a corresponding morphism,
and these would together form a parametric representation. This was done
in Example 4.1. However, we can also replace the exponents i, j, k with the
polynomials

p = bj0 + ck0 +

N
∑

n=1

bbn + ccn

a
in,

q = aj0 +
N

∑

n=1

bnin,

r = ak0 +

N
∑

n=1

cnin,

where j0, k0, i1, . . . , in are new parameters, which can now have any values.
Thus the solutions can be represented with one parametric word for each
unknown. The parametric representation has at most quadratic length with
respect to the length of the equation.

Theorem 4.2 does not hold, if instead of periodic solutions we consider all
solutions. Indeed, we will show that a parametric solution for the equation
xyxzyz = zxzyxy consists of at least three morphisms, if linear Diophantine
relations are not allowed. First we determine the solutions of this equation.

Lemma 4.3. The nonperiodic solutions of the equation xyxzyz = zxzyxy
are x = p, y = q, z = 1 or x = p, y = q, z = pq, where p, q ∈ Σ∗ and pq 6= qp.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If h
is a nonperiodic solution, then, by Lemma 2.6,

h(xy) = (uv)iu, h(xzy) = v(uv)j , h(z) = (uv)ku,

where uv is primitive. If |h(x)| ≥ |uv|, then uv and vu are both prefixes
of h(x), uv = vu, and the solution is periodic. Thus |h(x)| < |uv|. Sym-
metrically |h(y)| < |uv|, so i = 0 or i = 1. If k > 0 and h(x) 6= v, then uv
is a factor of uvuv in a nontrivial way, which contradicts the primitivity of
uv. If h(x) = v, then h(y) = v(uv)l for some l, u and v satisfy a nontrivial
relation and the solutions is periodic. Thus k = 0 and h(z) = u. If i = 0,
then h(xy) = h(z). If i = 1, then either h(z) = 1 or j = 1 or j = 2 or
v = 1. If j = 1, then |v| = 2|u|, u is a prefix and a suffix of v, and u and v
commute. If j = 2, then |u| = 2|v|, v is a prefix and a suffix of u, and u and
v commute. If v = 1, then |h(x)|, |h(y)| < |uv| is not possible. This proves
that the claimed solutions are all nonperiodic solutions. If p and q would
commute, the solution would be periodic.

The number of occurrences of a letter a ∈ Σ in a parametric word after
giving values for the parameters can be viewed as a polynomial, where the
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variables are the numerical parameters i ∈ Λ and new variables pa for every
p ∈ ∆ and a ∈ Σ. Formally, we define the polynomial |α|a as follows:

(i) if p ∈ ∆, then |(p)|a = pa,

(ii) if α and β are parametric words, then |(αβ)|a = |α|a + |β|a,

(iii) if α is a parametric word and i ∈ Λ, then |(αi)|a = |α|ai.

For example, |(piq)jp|a = paij + qaj + pa. If ϕ is a valuation, then |ϕ(α)|a is
the value taken by the polynomial |α|a, when i is given the value ϕ(i) (for
all i ∈ Λ) and pa is given the value |ϕ(p)|a (for all p ∈ ∆).

Theorem 4.4. The equation xyxzyz = zxzyxy does not have a parametric
solution of the form

x = α1, y = β1, z = γ1 or x = α2, y = β2, z = γ2.

Proof. The following are examples of the solutions of the equation:

x = a, y = b, z = 1; x = a, y = b, z = ab; x = a, y = a, z = a. (1)

We will show that if α, β, γ are parametric words such that

x = ϕ(α), y = ϕ(β), z = ϕ(γ) (2)

is a solution of the equation for all valuations ϕ, then we can get at most
one of the three above-mentioned solutions from these parametric words.

Consider the three polynomials |γ|a, |αβ|a − |γ|a, and |α|a|β|b − |α|b|β|a.
The values taken by them are

|z|a, |xy|a − |z|a, |x|a|y|b − |x|b|y|a, (3)

where (x, y, z) can be any solution of the equation xyxzyz = zxzyxy. If
z = 1, the first value is zero, if xy = z, the second value is zero, and if x and
y are powers of a common word, the third value is zero. By Lemma (4.3),
one of these holds for any solution, so the product of the three polynomials
is zero. But this means that one of the polynomials must be zero. For the
first solution in (1) only the first value in (3) is zero, for the second solution
only the second value is zero, and for the third solution only the third value
is zero. Thus only one of these solutions can be obtained from (2).

5 Exponential equations

Let α and β be parametric words. The pair (α, β) can be viewed as an
equation, referred to as an exponential equation. The height of this equation
is the height of αβ. The solutions of this equation are the functions f :
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Λ → N0 that satisfy f(α) = f(β). If the numerical parameters are in order
i1, . . . , in, then we can talk of the solution (f(i1), . . . , f(in)) or of the solution
i1 = f(i1), . . . , in = f(in).

If we know some parametric words, which give all solutions of an equa-
tion, but which also give some extra solutions, then often the right solutions
can be picked by adding some constraints for the numerical parameters.
These constraints can be found by exponential equations, and the following
theorems prove that they are in our cases equivalent with linear Diophantine
relations.

We will transform words into polynomials when studying exponential
equations. Alphabet Ξ with k letters can be thought to be the set {1, . . . , k}.
Then we can define the functions λ, µ : Ξ∗ → Z[X]:

λ(w) = Xm+1, µ(w) = amXm + · · · + a1X + a0

for all w = am . . . a0 ∈ Ξ∗. This corresponds to the n-adic representation
of a number when n > k: the word w represents the number obtained by
giving the value n for X in the polynomial µ(w). In particular, if u, v ∈ Ξ∗,
then

µ(uv) = µ(u)λ(v) + µ(v).

Theorem 5.1. Let E be an exponential equation of height one. There exists
a linear Diophantine relation R such that a function f : Λ → N0 is a solution
of E if and only if f ∈ R.

Proof. Let E be the equation α = β, where

α = s0t
i1
1 s1 . . . timm sm, β = u0v

j1
1 u1 . . . vjn

n un,

s0, . . . , sm, t1, . . . , tm, u0, . . . , un, v1, . . . , vn ∈ ∆∗ and i1, . . . , im, j1, . . . , jn ∈
Λ. Function f is a solution if and only if µ(f(α)) = µ(f(β)). Now µ(f(α))
is

µ(s0)λ(t1)
f(i1)λ(s1) . . . λ(tm)f(im)λ(sm)

+
µ(t1)(λ(t1)

f(i1) − 1)

λ(t1) − 1
· λ(s1) . . . λ(tm)f(im)λ(sm)

+ · · · +
µ(tm)(λ(tm)f(im) − 1)

λ(tm) − 1
· λ(sm) + µ(sm),

which can be rewritten as
(

µ(s0) +
µ(t1)

λ(t1) − 1

)

λ(s1 . . . sm)λ(t
f(i1)
1 . . . tf(im)

m )

+
m

∑

k=2

(

µ(sk−1) +
µ(tk)

λ(tk) − 1
−

µ(tk−1)λ(sk−1)

λ(tk−1) − 1

)

λ(sk . . . sm)λ(t
f(ik)
k . . . tf(im)

m )

+µ(sm),
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and µ(f(β)) is of the corresponding form. Thus the equation

(λ(t1) − 1) . . . (λ(tm) − 1)(λ(v1) − 1) . . . (λ(vn) − 1)µ(f(α))

=(λ(t1) − 1) . . . (λ(tm) − 1)(λ(v1) − 1) . . . (λ(vn) − 1)µ(f(β))

can be rewritten as

XP1 + · · · + XPM = XQ1 + · · · + XQN , (4)

where every Pk and Qk is a linear polynomial with unknowns f(il), f(jl).
Equation (4) can be satisfied only if M = N . Then it is equivalent with the
formula

∨

π

(

(P1 = Qπ(1)) ∧ · · · ∧ (PN = Qπ(N))
)

,

where π runs over all permutations of N elements. Hence the claim follows.

In some cases Theorem 5.1 can be generalized for exponential equations
of height two.

Theorem 5.2. Let Λ = {i, j}. Let s0, . . . , sm, t1, . . . , tm, u0, . . . , un and
v1, . . . , vn be parametric words of height at most one, with no occurrences
of parameter j. Assume that i occurs at least in the words t1, . . . , tm and
v1, . . . , vn. Let α = s0t

j
1s1 . . . tjmsm and β = u0v

j
1u1 . . . vj

nun. Now there
exists a linear Diophantine relation R such that a function f : Λ → N0 is a
solution of the exponential equations E : α = β if and only if f ∈ R.

Proof. Like in the proof of Theorem 5.1, the equation µ(f(α)) = µ(f(β))
can be turned into the equation

XP1 + · · · + XPM = XQ1 + · · · + XQN , (5)

where every Pk and Qk is of the form af(i)f(j) + bf(i) + cf(j) + d for some
integers a, b, c, d. Equation (5) can be satisfied only if M = N . Then it is
equivalent with the formula

∨

π

(

(P1 = Qπ(1)) ∧ · · · ∧ (PN = Qπ(N))
)

, (6)

where π runs over all permutations of N elements.
Consider now the equations Pk = Qπ(k). They are of the form af(i)f(j)+

bf(i) + cf(j) + d = 0. If a = 0, this is a linear equation. If a 6= 0, then
f(i) ≤ |b + c + d| or f(j) ≤ |b + c + d|, because otherwise |af(i)f(j)| >
|bf(i) + cf(j) + d|. If f(i) or f(j) is fixed, the equation turns into a linear
equation. Hence the claim follows.

11



The parametric words in the next theorem come from Lemma 2.9. Ex-
ponential equations formed by the parametric words in the other Lemmas
2.6 – 2.10 are handled by Theorems 5.1 and 5.2, but Lemma 2.9 requires
this special treatment.

Theorem 5.3. Let ∆ = {p, q}, Λ = {i, j, k} and a ≥ 2. Let α = (pqa)ip,
β = q, γ = (pqa)jp, or











α = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)i,

β = (pq)k+1p,

γ = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)j.

Let A,B ∈ {x, y, z}∗ and let h be the morphism mapping x 7→ α, y 7→ β, z 7→
γ. Now there exists a linear Diophantine relation R such that a function
f : Λ → N0 is a solution of the exponential equation E : h(A) = h(B) if and
only if f ∈ R.

Proof. In the first case E is of height one and the claim follows from Theorem
5.1. Consider the second case. It can be assumed that A and B begin with
x and z. Consider the equivalent equation yaA = yaB. Let the maximal
prefixes of the left- and right-hand sides of the form yat1 . . . yatn, where
tl ∈ {x, z}, be U and V . Now the equation is UA1 = V B1. Let T =
((pq)k+1p)a−1pq. Now the parametric words h(U) and h(V ) are of the form
TP (i,j,k) and TQ(i,j,k), where P and Q are linear polynomials.

We show that if f is a solution of h(A) = h(B), then

P (f(i), f(j), f(k)) = Q(f(i), f(j), f(k)). (7)

Assume that P (f(i), f(j), f(k)) > Q(f(i), f(j), f(k)) (the other direction is
symmetric). Then

f(T ch(A1)) = f(h(B1)), (8)

where c ≥ 1. Because βa−1pq ≤ T , it must be βa−1pq ≤ h(B1). It
follows that B1 = yaB2. Now (8) can be reduced to f(T c−1h(A1)) =
f((pq)kph(B2)), and either c > 1 or y ≤ A1. In both cases (pq)k+1p ≤
T c−1h(A1), and thus pq ≤ h(B2), which is possible only if B2 begins with x
or z. But then B1 begins with yax or yaz, which is against the maximality
assumption of V . Equation (7) has been shown.

Now the equation h(UA1) = h(V B1) is equivalent with the pair of equa-
tions h(U) = h(V ), h(A1) = h(B1). The former is equivalent with the linear
Diophantine equation (7). The latter is shorter than the original equation
and the theorem can be proved inductively.

We must examine some exponential equations of height one more closely.
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Theorem 5.4. Let Λ = {i}. Let E : s0t
is1 . . . tism = u0t

iu1 . . . tiun be an
exponential equation of height one, s0, . . . , sm, u0, . . . , un, t ∈ ∆∗ and

|s0 . . . smu0 . . . un| < S|t|.

There exists a number T = O(S) such that f is a solution of E for every
f(i) ≥ T , or f is not a solution for any f(i) ≥ T .

Proof. Like in the proof of Theorem 5.1, we get the equation (4). The
polynomials Pj are of the form af(i) + b. On the other hand, they are
exponents of terms of products of λ(sk), µ(sk), λ(t), λ(t)f(i), µ(t). Each of
these polynomials can occur in the products at most once. Thus |t| divides
a and b ≤ 2|s0 . . . smt|. Similar conditions hold for coefficients of Qj . The
equation Pj = Qπ(j) can be written as Af(i) = B, where A = 0 or |A| ≥ |t|
and |B| ≤ 2|s0 . . . smu0 . . . unt2|. Now there exists the required number T
such that the equations Pj = Qπ(j) have no solutions f(i) ≥ T , unless the
equations are trivial. This proves the claim.

6 Basic equations

From now on we only consider equations with three unknowns. The alphabet
of unknowns is Ξ = {x, y, z}. The left-hand side of an equation can be
assumed to begin with x. We can also assume that x occurs on the right-
hand side, but not as the first letter.

Periodic solutions and solutions, where some unknown has the value 1,
are called trivial. These are easy to parameterize by Theorem 2.1.

An equation is a basic equation, if it is a trivial equation U = U , where
U ∈ Ξ∗, if it has only trivial solutions, or if it is of one of the following forms,
where a, b ≥ 1, c ≥ 2 and t ∈ {x, z}:

B1. xay . . . = ybx . . .

B2. x2 . . . ⇉ yax . . .

B3. xyt . . . ⇉ zxy . . .

B4. xyt . . . ⇉ zyx . . .

B5. xyz . . . = zxy . . .

B6. xyz . . . = zyx . . .

B7. xycz . . . = zycx . . .

B8. xyt . . . ⇉ zaxy . . .

B9. xyxz . . . ⇉ zx2y . . .

13



The parameterizability of basic equations is easy to prove with the help
of previous lemmas and theorems.

Lemma 6.1. Let S, T, U, V ∈ Ξ∗. Assume that the equation S = T has a
parametric solution {(hj , Rj) : j = 1, . . . ,m}, where ∆ = {p, q} and Λ =
{i1, . . . , ik}. Assume that the exponential equations hj(U) = hj(V ) are
equivalent with linear Diophantine relations. Then the pair of equations
S = T,U = V has a parametric solution.

Proof. Let hj(U) = hj(V ) be equivalent with the linear Diophantine re-
lation R′

j. We show that the solutions of the equation have a parametric
representation

{

(hj , Rj ∩ R′

j) : j = 1, . . . ,m
}

∪ A,

where A is a parametric representation of the periodic solutions
If ϕ = h ◦ f is a valuation in Rj ∩R′

j , then ϕ ◦ hj is a solution of S = T
and f is a solution of hj(U) = hj(V ). Now ϕ◦hj is also a solution of U = V .

If g is a nonperiodic solution of the pair of equations S = T,U = V , then
g = ϕ ◦ hj for some number j and valuation ϕ = h ◦ f satisfying f ∈ Rj . It
needs to be shown that f is a solution of hj(U) = hj(V ). The morphism h is
a solution of the equation f(hj(U)) = f(hj(V )), which has two unknowns.
But h cannot be periodic, because g is not periodic. Thus f(hj(U)) and
f(hj(V )) must be the same word

Theorem 6.2. Every basic equation has a parametric solution of bounded
length.

Proof. For equations U = U and for equations with only trivial solutions
the claim is clear. We prove it for equations B1 – B9. First we reduce
equations to other equations by Theorem 3.1. The equation B2 is reduced
by the substitution x 7→ yx to the equation xyx . . . = yax . . ., which is of
the form B1. The equations B3 and B4 are reduced by the substitution
x 7→ zx to the equations xyz . . . = zxy . . . and xyz . . . = yzx . . ., which are
of the form B5. The equation B8 is reduced by the substitution x 7→ zx to
the equation xyzA = zaxyB for some A,B ∈ Ξ∗. By Lemma 2.11, this is
equivalent with the equation xyzxyzA = zxyzaxyB, which is of the form
B5. Therefore only the cases B1, B5, B6, B7 and B9 have to be considered.

Consider the equations B1, B5, B6, B7 and B9 as the equation U = V of
Lemma 6.1, and the equations xy = yx, xyz = zxy, xyz = zyx, xycz = zycx
and xyxz ⇉ zx2y as the equation S = T . For B1 this can be done by Lemma
2.11, otherwise by a length argument. By Lemmas 2.7, 2.9 and 2.10, the
solutions of these equations are obtained from certain parametric words
over word parameters p, q and numerical parameters i, j, k. For equations
B1, B5 and B6, the exponential equation of Lemma 6.1 will be of height one
and Theorem 5.1 can be used. For B9, Theorem 5.2 can be used, and for
B7, Theorem 5.3 can be used. So the exponential equation is in all cases
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equivalent with a linear Diophantine relation and the claim follows from
Lemma 6.1.

7 Images and θ-images

In this section we define images and θ-images of equations and prove some
results about them. If h is a solution of the equation xU ⇉ yV , then
h(y) ≤ h(x). This fact was already behind Theorem 3.1. This will be
generalized.

Let t1, . . . , tn ∈ {y, z} and V = t1 . . . tn. Let tn+1 = t1. If a morphism h
is a solution of the equation E : xU ⇉ V xW , then

h(x) = h(V kt1 . . . ti)u (9)

for some numbers k, i and word u satisfying k ≥ 0, 0 < i ≤ n and h(ti+1) �
u.

On the other hand, a morphism h satisfying (9) is a solution of E if and
only if uh(U) = h(ti+1 . . . tnt1 . . . ti)uh(W ). We can write h = g◦f , where f
is the morphism x 7→ V kt1 . . . tix and g is the morphism for which g(x) = u,
g(y) = h(y) and g(z) = h(z). Now h is a solution of E if and only if g is a
solution of

xf(U) ⇇ f(ti+1 . . . tnt1 . . . ti)xf(W ). (10)

An image of an equation xU(x, y, z) ⇉ V (y, z)xW (x, y, z) under the
morphism x 7→ V kPx, where k ≥ 0, V = PQ and Q 6= 1, is

xU(V kPx, y, z) ⇇ QPxW (V kPx, y, z).

If V contains only one of y, z or if P = 1, the image is degenerated.
The m first images of an equation of length n are of length O(mn).

Images are needed in the most important reduction steps used in the proof
of parameterizability of equations with three unknowns. The solutions of an
equation are easily obtained from the solutions of its images, so it is enough
to consider them. There are infinitely many images, but a finite number is
enough, if one of them is turned from a one-sided equation to an ordinary
equation.

Equation E is reduced to the equations E1, . . . , En by an n-tuple of substi-
tutions, if E is of the form xU(x, y, z) ⇉ t1 . . . tkxV (x, y, z), where 1 ≤ n ≤ k
and t1, . . . , tk ∈ {y, z}, equation Ei is

xU(t1 . . . tix, y, z) ⇇ ti+1 . . . tkt1 . . . tixV (t1 . . . tix, y, z),

when 1 ≤ i < n, and equation En is

xU(t1 . . . tnx, y, z) = tn+1 . . . tkt1 . . . tnxV (t1 . . . tnx, y, z).

By the above, Theorem 3.1 can be generalized.
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Theorem 7.1. Let E be an equation of length n. If E is reduced to the
equations E1, . . . , Em by an m-tuple of substitutions, and if E1, . . . , Em have
parametric solutions of length at most c, then E has a parametric solution
of length O(mn)c.

Reductions with n-tuples of substitutions are not sufficient. Other ways
to restrict the considerations to a finite number of images are needed.

Equation
xU(x, y, z) ⇉ V (y, z)xW (x, y, z)

is of type I, if both unknowns y, z occur in V . Equation

xybU(x, y, z) ⇉ zcxV (x, z)yW (x, y, z),

where b, c ≥ 1, is of type II, if b > 1 or V 6= 1.

Theorem 7.2. The solutions of an equation of type I of length n can be
parameterized in terms of the solutions of O(n2) of its images of length
O(n3).

Proof. Consider the equation E : xU(x, y, z) ⇉ V (y, z)xW (x, y, z), where
both y and z occur in V , and its images

EP,i : xU(V iPx, y, z) ⇇ QPxW (V iPx, y, z), (11)

where i ≥ 0, V = PQ and Q 6= 1. We show that there exists a number T
such that if P and Q are fixed, then the equations (11) are equivalent for
all i ≥ T .

Let h be a solution of EP,i. Then theorem 5.4 can be used for the
exponential equation

h(x)U(h(V )ih(Px), h(y), h(z)) = h(QPx)W (h(V )ih(Px), h(y), h(z)),

where i is considered to be unknown. The bound S in the theorem does
not depend on h and is of size O(n), because both y and z occur in V and
h(x) ≤ h(y) or h(x) ≤ h(z). So there exists a number T = O(n) such
that h is a solution for all i ≥ T or for no i ≥ T . Thus the equations
EP,T , EP,T+1, EP,T+2, . . . are equivalent if P is fixed.

Now the images of this theorem can be taken to be EP,j, where P < V
and j ≤ T . The solutions of E are g ◦f ◦h′, where either h′ is the morphism
x 7→ V jPx, g runs over the solutions of the corresponding image EP,j, f
does nothing and j < T , or h′ is the morphism x 7→ V T+iPx, i is a numerical
parameter, g runs over the solutions of EP,T and f gives values for i. Because
T = O(n) and |V | = O(n), there are O(n2) of these images, and because
|V jPx| = O(n2), they are of length O(n3).
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Like in the proof of Theorem 7.2, we will often use a variation of the
following reasoning: if the images of E are E1, E2, . . . , and if Em, Em+1, . . .
are equivalent, then the solutions of E can be parameterized in terms of the
solutions of E1, . . . , Em. It is also easy to see that if each of these images has
a parametric solution of length at most c, then E has a parametric solution
of length O(m2)c. This also holds for θ-images, which are defined later.

Consider an equation of type II

xybA(x, y, z) ⇉ zcxB(x, z)yC(x, y, z), (12)

where b, c ≥ 1 and b > 1 or B 6= 1. Its images are degenerated and of the
form

xybA(zix, y, z) ⇇ zcxB(zix, z)yC(zix, y, z). (13)

Theorem 7.2 holds for some of the equations (12).

Theorem 7.3. If B = zd, d ≥ 1, then the solutions of (12) can be param-
eterized in terms of the solutions of O(n2) of its images of length O(n3).

Proof. Equation (13) is reduced by the mapping z 7→ xz to the equation

ybA((xz)ix, y, xz) = (zx)c(xz)dyC((xz)ix, y, xz). (14)

Let h be its solution. Let D = h((zx)c(xz)d) and h(y) = DjY , where
Y < D. Then we get the equality

Y (DjY )b−1A(h((xz)ix),DjY, h(xz)) = DY C(h((xz)ix),DjY, h(xz)). (15)

On the other hand, if (15) holds, then h is a solution of (14) and it gives a
solution of (13). It needs to be shown that there exists a bound T = O(n2),
which does not depend on h, such that if (15) holds for some i ≥ T , then it
holds for all i ≥ T . Then the images (13) with i ≤ T are sufficient, like in
the proof of Theorem 7.2.

If j < c + d + 1 = O(n) is fixed, then (15) can be considered to be an
exponential equation with unknown i, and Theorem 5.4 can be used. The
bound S = O(n2) not depending on h exists, because |Y | < (d + c)|h(xz)|.

For the rest of the proof we consider the case j ≥ c+d+1. Let t and v be
the primitive roots of h(xz) = ta1 and D = va2 . If these have equal length,
then t = v and h(xz) = h(zx), which leads to a periodic solution. Assume
that |t| 6= |v|. In (15), starting from the left, move the powers of t and v as
far to the left as possible by changing them to their suitable conjugates, and
then combine as much as possible from the right to these powers. This may
require replacing i and j with i′ = i− b1 and j′ = j − b2 for some b1, b2. By
Theorem 2.3, powers of conjugates of h(xz) and D can overlap for at most
|h(xz)D| letters, so we can select b1, b2 ≤ c+d+1, and i′ and j′ can be used
if i and j are large enough. This way (15) can be written as

s0t
p1

1 s1 . . . tpm
m sm = u0v

q1

1 u1 . . . vqn
n un, (16)
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where s0, . . . , sm, u0, . . . , un ∈ ∆∗, every tk and vk is either a conjugate of t
or a conjugate of v, and every pk and qk is a polynomial of first degree with
unknowns i′, j′. The coefficients in these polynomials cannot be negative.
Also the last letter of tk is different from the last letter of sk−1, and tk �
skt

a
k+1 for all a. The same holds for words uk and vk and for polynomials

qk. Because the words h(xz) and D consist of h(x) and h(z) and Y < D,
there exists a bound S = O(n2) such that

|s0 . . . smu0 . . . un(tv)2| < S|ta| and b < a1S (17)

when ai′ + b is in {p1, . . . , pm, q1, . . . , qn}. The same holds with v in place of
t, j′ in place of i′, and a2 in place of a1.

We prove by induction with respect to m + n that if (16) has a solution
f with f(i′), f(j′) ≥ S + 2, then sk = uk, tk = vk and f(pk) = f(qk) for all
k. If m + n = 0, then the claim is clear (although the equation is of height
zero). If m = 0, n > 0, or other way around, then the exponent occurring in
the equation can get only small values. Assume that m,n > 0. From (17)

it follows that |t
f(pk)
k | > |s0 . . . smu0 . . . un(tv)2| for all k, and similarly for

vk. It can be assumed that u0 ≤ s0, so v1 = BA and s0 = u0(BA)kB for

some A,B. Now |v
f(q1)
1 | ≥ |s0|+ |t21| and |t

f(p1)
1 | ≥ |(AB)2|. Thus the powers

of t1 and AB have a common prefix of length |t1AB| and, by Theorem
2.3, t1 = AB. Now t1 = v1, B = 1, k = 0 and s0 = u0. We prove that

f(p1) = f(q1). From f(p1) > f(q1) it would follow that v1 = t1 ≤ u1v
f(q2)
2

(or v1 = t1 ≤ u1, if n = 1), which is a contradiction. The case f(p1) < f(q1)
is symmetric. It follows inductively that sk = uk, tk = vk and f(pk) = f(qk)
for all k.

Now it can be seen that pk − qk contains only one of i′ and j′, because
tk = vk, and the coefficient of i′ or j′ is divisible by a1 or a2. So if f(pk) =
f(qk) and f(i′), f(j′) ≥ S, then it must be pk = qk because of (17). The
claim follows.

Theorem 7.2 can be generalized by defining θ-images.
A sequence of equations E0, . . . , En is a chain, if Ei is an image of Ei−1

for all i, 1 ≤ i ≤ n. Then En is an image of order n of E0. If every Ei is a
degenerated image, then the chain is degenerated and En is a degenerated
image of order n.

We define θ-images of equations of type I and II. For equations of type
I all images are θ-images. For equations of type II the degenerated images
of order 2 and nondegenerated images of order 3 are θ-images.

Lemma 7.4. The solutions h of equation (12) satisfying |h(y)| ≤ |h(z)| can
be parameterized in terms of the solutions of O(n) of its images of length
O(n2).
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Proof. This is proved like Theorem 7.2. Let Ei be the equation (13) and let
h be its solution. Theorem 5.4 can be used for the exponential equation

h(xybA(zix, y, z)) = h(zcxB(zix, z)yC(zix, y, z)),

where i is considered to be the unknown. The bound S does not depend on
h and is of size O(n), because h(x), h(y) ≤ h(z). So there exists a number
T = O(n) such that either h is a solution for all i ≥ T or for no i ≥ T .
Thus the equations ET , ET+1, ET+2, . . . are equivalent. Like in the proof of
Theorem 7.2, the images Ej, where j ≤ T , are sufficient.

Lemma 7.5. The solutions h of (12) satisfying |h(y)| ≤ |h(z)| can be pa-
rameterized in terms of the solutions of O(n17) of its θ-images of length
O(n18).

Proof. Let these solutions be called τ -solutions. Let Ei be the equation
(13). By Lemma 7.4, the τ -solutions can be parameterized in terms of the
τ -solutions of E0, . . . , ET for some T . Let Pi be the set of those τ -solutions
h of Ei, for which |h(z)| ≥ |h(xy)|, and let Qi be the set of those τ -solutions
h of Ei, for which |h(y)| ≤ |h(z)| ≤ |h(xy)|.

Let E′

i be the image of Ei under the morphism z 7→ xz, and let E′′

i be
the image of E′

i under the morphism y 7→ zy. From the length constraint
|h(y)| ≤ |h(z)| ≤ |h(xy)| it follows that the set Qi can be parameterized in
terms of the solutions of E′′

i , which is a nondegenerated image of the third
order of (12).

Consider the set Pi. The equation (13) is of type I, so its solutions
can be parameterized in terms of the solutions of a finite number of its
images. Because of the condition |h(z)| ≥ |h(xy)| in the definition of Pi,
the image under the morphism z 7→ xz can be omitted. Let the set thus
obtained be Fi. The set Pi can be parameterized in terms of the solutions
of equations of Fi. Partition Fi into the sets Gi and Hi of degenerated and
nondegenerated images. The equations of Hi are of type I, so their equations
can be parameterized in terms of the solutions of a finite number of their
images. These images are nondegenerated images of the third order of the
original equation (12). The equations of Gi are degenerated images of the
second order. So also Pi can be parameterized in terms of the solutions of a
finite number of θ-images of (12).

In this construction there are O(n) images of the first order of length
O(n2), O(n5) images of the second order of length O(n6), and O(n17) images
of the third order of length O(n18). The claim follows.

Lemma 7.6. Let A,B,C ∈ Ξ∗ and i, k, a, p, a1, . . . , an ≥ 0 and c, q > 0.
Assume that all letters x, y, z occur in A, y � A, 0 < q ≤ n and aq + c+2 ≤
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k ≤ i − c − |A|. Let

D1(x, z) = (zx)c((xz)i+a1x) . . . ((xz)i+aq−1x)xz,

D2(x, z) = (xz)i−k+aqx((xz)i+aq+1x) . . . ((xz)i+anx)(xz)p.

Now the equations

y(D1B)aA((xz)ix,D1B,xz) ⇇ zD2D1C(x, y, z)

y(D1B)aA((xz)ix,D1B,xz) ⇇ D2D1C(x, y, z)

have only trivial solutions.

Proof. The first equation is reduced by the morphism z 7→ yz to the equation

(D1(x, yz)B′)aA((xyz)ix,D1(x, yz)B′, xyz) = zD2(x, yz)D1(x, yz)C ′.

If a > 0, then the equation is of the form

(yzx)cx . . . = (zxy)i−k . . . .

Because c > 0 and i − k ≥ c + 1, this equation has only trivial solutions by
Corollary 2.5. If a = 0 and zmy ≤ A, m > 0, then the equation is of the
form

(xyz)my . . . = (zxy)i−k . . . .

Because i− k ≥ m + 1, this equation has only trivial solutions by Corollary
2.5. If a = 0 and zmx ≤ A, m ≥ 0, then the equation is of the form

(xyz)m+i . . . = (zxy)i−k+aqzxxyz . . . ,

except if n = q and p = 0, when it is of the form

(xyz)m+i . . . = (zxy)i−k+aqzx(yzx)cxyz . . . .

Because i− k + aq > 0 and i > i− k + aq + c + 1, this equation has in both
cases only trivial solutions by Corollary 2.5.

The second equation is similar. It is reduced by the morphism x 7→ yx
to the equation

(D1(yx, z)B′)aA((yxz)iyx,D1(yx, z)B′, yxz)

=x(zyx)i−k+aq((yxz)i+aq+1yx) . . . ((yxz)i+anyx)(yxz)pD1(yx, z)C ′.

If a > 0, then the equation is of the form

(zyx)cy . . . = (xzy)i−k . . . .

Because c > 0 and i − k ≥ c + 1, this equation has only trivial solutions by
Corollary 2.5. If a = 0 and zmy ≤ A, m > 0, then the equation is of the
form

(yxz)mz . . . = (xzy)i−k . . . .
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Because i− k ≥ m + 1, this equation has only trivial solutions by Corollary
2.5. If a = 0 and zmx ≤ A, m ≥ 0, then the equation is of the form

(yxz)m+i . . . = (xzy)i−k+aqxyx . . . ,

except if n = q and p = 0, when it is of the form

(yxz)m+i . . . = (xzy)i−k+aqx(zyx)cyx . . . .

Because i− k + aq > 0 and i > i− k + aq + c + 1, this equation has in both
cases only trivial solutions by Corollary 2.5.

Lemma 7.7. If x occurs in B, then the nonperiodic solutions h of (12)
satisfying |h(y)| ≥ |h(z)|, and some periodic solutions, can be parameterized
in terms of the solutions of O(n5) of its θ-images of length O(n6).

Proof. The images of (12) are the equations (13). Because of the condition
|h(y)| ≥ |h(z)|, it is enough to consider the image of this under the morphism
z 7→ xz:

ybA((xz)ix, y, xz) ⇉ (zx)cB((xz)ix, xz)yC((xz)ix, y, xz). (18)

The length constraint is now |h(y)| ≥ |h(xz)|. Equation (18) is a nondegen-
erated image of the second order of (12). Let D = (zx)cB((xz)ix, xz). Now
the image of (18) under the morphism y 7→ DjD1y, where j ≥ 0, D1 < D
and DjD1 6= 1, is

y(DjD1y)b−1A((xz)ix,DjD1y, xz)

⇇D2D1B((xz)ix, xz)yC((xz)ix,DjD1y, xz),
(19)

where D1D2 = D.
We can write D = (zx)c((xz)i+a1x) . . . ((xz)i+anx)(xz)p, where n ≥ 1,

p ≥ 0 and a1, . . . , an ≥ 0. Let M = max {al + c + 1 + |A| : 1 ≤ l ≤ n}. If
D1 ”cuts” the factor (xz)i in D, then

D1 = (zx)c((xz)i+a1x) . . . ((xz)i+aq−1x)(xz)k,

D2 = (xz)i−k+aqx((xz)i+aq+1x) . . . ((xz)i+anx)(xz)p

or

D1 = (zx)c((xz)i+a1x) . . . ((xz)i+aq−1x)(xz)k−1x,

D2 = z(xz)i−k+aqx((xz)i+aq+1x) . . . ((xz)i+anx)(xz)p,

where 0 < k ≤ t and 0 < q ≤ n. If M ≤ k ≤ t − M , then, by Lemma 7.6,
equation (19) has only trivial solutions.
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All nonperiodic solutions h of (12), for which |h(y)| ≥ |h(z)|, are ob-
tained from the solutions of (19). Divide the solutions of the original equa-
tion into sets P and Q depending on whether they are obtained from (19)
when i ≤ 2M or when i ≥ 2M . It needs to be shown that these sets, and
some periodic solutions, can be parameterized in terms of the solutions of a
finite number of equations (19).

Let U ⇇ V be the equation (19) and let h be its solution. If i ≤ 2M is
fixed, then h(U) = h(V ) can be viewed as an exponential equation with j
as the unknown. We use Theorem 5.4. It gives a T = O(n2) such that h is a
solution for all j ≥ T or for no j ≥ T . It can be assumed that the same T is
valid for all i ≤ 2M . Like in the proof of Theorem 7.2, the set P , and some
periodic solutions, can be parameterized in terms of the equations (19) with
i ≤ 2M and j ≤ T . There are O(n3) of those.

Consider the set Q. We can write i = 2M + m. Replace (xz)i with
(xz)M (xz)m(xz)M in (19). Now D1 can no longer ”cut” (xz)m, if we are
interested only in equations with nonperiodic solutions. So there are only
O(n2) possibilities for D1. Fix D1 and a solution h. Now h(U) = h(V )
can be viewed as an exponential equation with j and m as the unknowns.
Fix m so that Theorem 5.4 can be used. There exists a bound L = O(n)
not depending on m such that either h is a solution for all j ≥ L or for no
j ≥ L. Next, fix j and view h(U) = h(V ) as an exponential equation with
m as the unknown. Now, by Theorem 5.4, there exists a bound Nj = O(nj)
such that either h is a solution for all m ≥ Nj or for no m ≥ Nj. The
bound Nj can be assumed to be increasing with respect to j. By combining
these considerations it can be seen that either h is a solution for all j ≥ L,
m ≥ NL or for no j ≥ L, m ≥ NL. The set Q, and some periodic solutions,
can be parameterized in terms of the equations (19) with i ≤ 2M + NL and
j ≤ L. There are O(n3) of those for every D1. This proves the theorem.

Lemma 7.8. If x occurs in B, then the nonperiodic solutions of (12), and
some periodic solutions, can be parameterized in terms of the solutions of
O(n17) of its θ-images of length O(n18).

Proof. The required θ-images are obtained by combining the sets of Lemmas
7.5 and 7.7.

Lemma 7.9. If B = zd, where d ≥ 1, then the solutions of (12) can be
parameterized in terms of the solutions of O(n26) of its θ-images of length
O(n27).

Proof. All images of the equation are degenerate; O(n2) of these of length
O(n3) can be chosen by Theorem 7.3. These images are of type I, so O(n6) of
their images of length O(n9) can be chosen by Theorem 7.2. Of these images
of the second order, the nondegenerated images are of type I, so O(n18) of
their images of length O(n27) can be chosen. These nondegenerated images
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of the third order with the degenerated images of the second order give the
set of required θ-images.

We define a complete set of θ-images of an equation of type I or II. For
equations of type I it is the set of Theorem 7.2. For equations of the form
(12) it is the set of Lemma 7.5, if B = 1, the set of Lemma 7.8, if x occurs
in B, and the set of Lemma 7.9, if B = zd, d ≥ 1. The next theorem follows
immediately from this definition.

Theorem 7.10. Every equation of type I or II of length n has a complete
set of θ-images consisting of O(n26) equations of length O(n27).

We assume that every complete set of θ-images satisfies the conditions
of Theorem 7.10.

Theorem 7.11. Let E be a word equation of length n. If {E1, . . . , Em} is
a complete set of θ-images of E and every Ei has a parametric solution of
length at most c, then E has a parametric solution of length O(mn26)c.

Proof. For equations of type I this follows from Theorem 7.2. Consider the
type II equation (12). If B 6= 1, then the claim follows from Lemmas 7.8
and 7.9. Assume that B = 1. By Lemma 7.5, it suffices to show that those
solutions h of (12), for which |h(y)| ≥ |h(z)|, can be parameterized. Let h
be such a solution. Then h(x) = h(z)mu for some m ≥ 1 and u ≤ h(z),
h(z) = uv for some v and y = vuw for some w. Now h = g ◦ f , where f and
g are morphisms, f(x) = (xz)mx, f(y) = zxy, f(z) = xz and g is a solution
of

yzx . . . = (zx)cy . . . . (20)

On the other hand, all such morphisms h are solutions of (12). By Lemma
2.11, g is also a solutions of yzx = zxy. Now, by Lemmas 2.7 and 6.1, the
solutions g of (20) can be parameterized. This gives a parametric represen-
tation for the required solutions h, if the exponent m in the morphism f is
considered to be a numerical parameter.

8 Neighborhoods and trees

The proof of the parameterizability of equations with three unknowns con-
sists mainly of reducing equations to other equations. This forms a tree-like
structure. The intention is to make all leaf equations in this tree to be ba-
sic equations. The possible reduction steps are given in the definition of a
neighborhood, which is preceded by two lemmas.

Lemma 8.1. Let u, v,w ∈ Σ∗, 0 < |w| ≤ |u| and c ≥ 1. If

wuc+1v . . . = uc+1vu . . . or w(uv)cu2 . . . = (uv)cu2 . . . ,

then uv = vu.
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Proof. Let u = wt. From wuc+1v . . . = uc+1vu . . . it follows that

(wt)c+1v · · · = t(wt)cvwt . . . and (wt)c+1v = t(wt)cvw.

From w(uv)cu2 . . . = (uv)cu2 . . . it follows that

(wtv)cwtwt · · · = tv(wtv)c−1wtwt . . . and (wtv)cwt = tv(wtv)c−1wtw.

In both cases the beginnings and ends of the last equation give wt = tw and
wtv = tvw. So ρ(w) = ρ(t) = ρ(tv) = ρ(v) = ρ(u).

Lemma 8.2. Let E0 be the equation xyazyps . . . ⇉ zybxyqt . . . , where s, t ∈
{x, z} and a + p 6= b + q. Let k ≥ 8 + |p − q| be even, Ek be the equation
xP ⇉ zQ and E0, . . . , Ek be a degenerated chain. Now the solutions of Ek

satisfying y 6= 1 are also solutions of the equation xyazyb
⇉ zybxya.

Proof. Assume that Ei+1 is the image of Ei under the morphism fi : x 7→
(zyb)cix, when i is even, and under the morphism fi : z 7→ (xya)ciz, when i
is odd. Because f0(x) and f0(z) and thus f0(s) and f0(t) begin with z, the
equation Ek is of the form xyazypr . . . ⇉ zybxyqr . . ., where

r = (fk ◦ · · · ◦ f1)(z) = (fk ◦ · · · ◦ f4)((((xya)c3zyb)c2xya)c1(xya)c3).

Let f = fk ◦ · · · ◦ f4. The words xya and zyb occur as factors of f(xya) at
least k − 4 times. If h is a solution of Ek, then

||h(xyazyp)| − |h(zybxyq)|| ≤ |a + p − b − q||h(y)|

≤(a + b)|h(y)| + |p − q||h(y)| ≤ (1 + |p − q|)|h(xyazyb)|

≤(k − 7)|h(xyazyb)| ≤ |h(f(xya))|.

Thus
w((uc3v)c2u)c1uc3 . . . = ((uc3v)c2u)c1uc3 . . . ,

where u = h(f(xya)), v = h(f(zyb)) and |w| ≤ |u|. Now, by Lemma
8.1, either w = 1 or uv = vu. In other words, h(xyazyp) = h(zybxyq) or
h(xyazyb) = h(zybxya). The first case is not possible by the assumptions
h(y) 6= 1 and a + p 6= b + q.

The equations E1, . . . , En form a neighborhood of an equation E, if one
of the following conditions holds:

N1. E1, . . . , En form a complete set of θ-images of E,

N2. E reduces to E1, . . . , En with an n-tuple of substitutions,

N3. E is the equation U = V , U and V begin with different letters, n = 2,
and E1 and E2 are equations U ⇉ V and V ⇉ U ,
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N4. n = 1 and E is the equation U = V and E1 is the equation UR = V R,

N5. E is the equation SU = TV , |S|t = |T |t for all t ∈ Ξ, n = 1 and E1 is
the equation US = V T ,

N6. n = 1 and E1 is E reduced from the left or multiplied from the right,

N7. n = 1 and, with the assumptions of Lemma 8.2, E is the equation
xP ⇉ zQ and E1 the equation xyazybxP ⇉ zybxyazQ.

The rules N1 and N2 will be the most important ones. The rule N3
makes it possible to consider one-sided equations. Because of the rule N6
it can be assumed that equations are reduced from the left and continue
sufficiently far to right. The other rules are used in some special cases. Next
theorem justifies the definition of a neighborhood.

Theorem 8.3. Let E be a word equation of length n and let E1, . . . , Em be
its neighborhood. If each Ei has a parametric solution of length at most c,
then E has a parametric solution of length O(mn26)c.

Proof. For N1 this follows from Theorem 7.11, for N2 from Theorem 7.1 and
for N7 from Lemma 8.2. The other cases are clear.

Directed acyclic graph, whose vertices are equations, is a tree of E, if
the following conditions hold:

(i) only vertex with no incoming edges is E,

(ii) all other vertices have exactly one incoming edge,

(iii) if there are edges from E0 to exactly E1, . . . , En, then these equations
form a neighborhood of E.

Theorem 8.4. Let E be a word equation of length n. If E has a tree of
height k, then all equations in the tree are of length O(n)27

k

. If each leaf
equation in this tree has a parametric solution of length at most c, then E
has a parametric solution of length O(n)52·27

k

c.

Proof. In the case N1 the first claim follows directly from Theorem 7.10,
and for the other cases the bound O(n)27

k

is more than enough. Now, by
Theorem 8.3, there exists a constant a such that E has a parametric solution
of length

a(an)52 · a((an)27)52 · a((an)27
2

)52 · · · · · a((an)27
k−1

)52 · c

<ak(an)52·27
k

c = O(n)52·27
k

c.
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A tree in which all leaves are basic equations is a basic tree.
If every θ-image of an equation of type I or II has a basic tree, then the

equation has a basic tree, because it has a complete set of θ-images. The
rule N1 is used this way instead of explicitly selecting some complete set of
θ-images.

The main theorem is proved by a sequence of lemmas. The lemmas are
proved by using the rules of the definition of a neighborhood in various ways.

Lemma 8.5. The equation xyz2A(x, y, z) = yz2xB(x, y, z) has a basic tree.

Proof. With N5 we get the equation Axyz2 = Byz2x, and then with N4
the equation z2yxAR = xz2yBR. With N3 we get z2yxAR

⇉ xz2yBR and
z2yxAR

⇇ xz2yBR. The former is basic of the form B2. The latter is
reduced by the pair of substitutions x 7→ zx, x 7→ z2x to the equations
zyzx . . . ⇉ xz2y . . . and yz2x . . . = xz2y . . .. These are basic of the form B9
or B7 and we get a basic tree.

Lemma 8.6. The equation x2yz . . . ⇉ zyxy . . . has a basic tree.

Proof. This equation is reduced by the pair of substitutions x 7→ zx and
x 7→ zyx to the equations xzxyz . . . ⇇ yzxy . . . and xzyxyz . . . = zyxy . . ..
The latter is basic of the form B5 and the first is reduced by the substitution
y 7→ xy to the equation zx2yz . . . = yzx2y . . ., which has a basic tree by
Lemma 8.5.

Lemma 8.7. Every nondegenerated θ-image of xy2z . . . ⇉ zy2x . . . has a
basic tree.

Proof. The equation is of type I, so its nondegenerated θ-images are of the
form xy2z . . . ⇇ y2zx . . . or of the form xy2z . . . ⇇ yzyx . . .. These are basic
of the form B2 or B8.

Lemma 8.8. Every nondegenerated θ-image of xyztA(x, y, z) ⇉ zx2yB(x, y, z),
where t 6= z, has a basic tree.

Proof. The equation is of type II. Its nondegenerated images of the second
order are

yxzg(h(tA)) ⇉ zx((xy)jxz)ixyg(h(B)), (21)

where h is the morphism x 7→ zix and g is the morphism z 7→ (xy)jxz. The
nondegenerated θ-images are the images of (21). Consider the cases j = 0
and j > 0 and let C = tA.

First, let j = 0. The images of (21) are

yxzC((xz)ix,DkD1y, xz) ⇇ D2D1yB((xz)ix,DkD1y, xz), (22)
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where D = D1D2 = zx(xz)ix, D 6= D1 and DkD1 6= 1. If D2D1 begins with
one of x2, xzx, zxz, then (22) is a basic equation. Otherwise D2D1 begins
with zx2, D1 = 1 and k > 0. Then (22) is

yxzC((xz)ix,Dky, xz) ⇇ zx(xz)ixyB((xz)ix,Dky, xz).

This is reduced by the substitution z 7→ yz to the equation

xyzC((xyz)ix,Eky, xyz) = zx(xyz)ixyB((xyz)ix,Eky, xyz),

where E = yzx(xyz)ix. This is equivalent with one of the following pairs of
equations:

(a) xyzx = zxxy and y . . . = z . . ., if t = x,

(b) xyzyzxx = zxxyzxy and y . . . = z . . ., if t = y and i > 1,

(c) xyzyzxx = zxxyzxy and y . . . = x . . ., if t = y, i = 1 and y � B,

(d) xyzyzxx = zxxyzxy and (yzx)y . . . = (yzx)x . . ., if t = y, i = 1 and
y ≤ B.

By Corollary 2.5, there are only trivial solutions in all cases.
Next, let j ≥ 0. If t = x, then (21) is

yxz((xy)jxz)ixg(h(A)) ⇉ zx((xy)jxz)ixyg(h(B)).

This is equivalent with the pair of equations yxzx ⇉ zxxy, y . . . = x . . . and
has only trivial solutions by Corollary 2.5. If t = y, then (21) is

yxzy . . . ⇉ zxxy(xy)j−1xzxy . . . .

Every image of this equation is of one of the following forms:

yx . . . ⇇ x2 . . . , yxz . . . ⇇ xzx . . . , yxzzx2s . . . ⇇ zx2yxzx . . . ,

where s 6= x. The two first equations are basic of the form B2 and B3. The
third equation is equivalent with the pair of equations yxzzx2

⇇ zx2yxz,
s . . . = x . . . and has only trivial solutions by Corollary 2.5.

9 Supporting equations

We define supporting equations and prove as an intermediate result that
they have basic trees.

Let 1 ≤ a, b ≤ 2, d ≥ 1 and t 6= y. A supporting equation is an equation
of the form

xaybt . . . ⇉ zyx . . . or xaybt . . . ⇉ zxy . . . , (23)
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or of the form
xaybt . . . ⇉ z(yz)dx . . . . (24)

A tree whose leaves are basic equations, supporting equations of the form
(23) or equations x2yt . . . ⇉ zyzxy . . ., where t 6= y, is a supporting tree.

Lemma 9.1. Let E0, . . . , E3 be a chain of images of the equation

E0 : xyatA(x, y, z) ⇉ zcxB(x, z)yC(x, y, z),

where a, c ≥ 1, A,C 6= 1 and t 6= y. Assume first that E2 is a degenerated
image. Now

1. E2 is of the form xyaz . . . ⇉ zx . . .;

2. if a = 2, c = 1, B = 1 and y � C, then E2 is of the form xy2z . . . ⇉

zxyx . . .;

3. if a = 2, c = 1 and B = x, then E2 is of the form xy2z . . . ⇉ zx2y . . .;

4. if a = 1, then E2 is basic equation B3 or of the form xyzs . . . ⇉

zx2y . . ., where s 6= z.

Assume then that E2 is a nondegenerated image. Now

1. E3 is a supporting equation;

2. if a = 2, c = 1, B = 1 and y � C, then E3 is a basic equation or of
the form yxzy . . . ⇉ zxzy . . .;

3. if a = 2, c = 1 and B = x, then E3 is a supporting equation of the
form (23) or an equation of the form x2ys . . . ⇉ zyzxy, where s 6= y;

4. if a = 1, then E3 is a supporting equation of the form (23).

Proof. The equation E1 is of the form

xyazA1(x, y, z) ⇇ zcxB(zix, z)C(zix, y, z),

where i > 0 and A1 6= 1. Its image E2 is of the form

D2D1zA2(x, y, z) ⇉ zh(zc−1xB(zix, z)C(zix, y, z)),

where h is the morphism z 7→ (xya)jD1z, j ≥ 0, D1 < xya, (xya)jD1 6= 1,
D1D2 = xya and z � A2 6= 1.

The equation E2 is a degenerated image if and only if D1 = 1. Then
the first four claims are correct. If D1 6= 1, then by writing E3 separately
in the three cases t = 0, D1 = x, and t > 0, D1 = x, and t ≥ 0, D1 = xyb,
1 ≤ b < a, the last four claims can be seen to be correct.
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Lemma 9.2. Let s, t 6= y. Every nondegenerated θ-image of the equation
xy2s . . . ⇉ zxyt . . . has a basic tree. Every nondegenerated θ-image of the
equation xy2z . . . ⇉ zx2y . . . has a supporting tree.

Proof. For the latter equation this follows from 3 of Lemma 9.1. For the
former it follows from 2 of Lemma 9.1, because the equation yxzy . . . ⇉

zxzy . . . is reduced by the substitution y 7→ zy to the equation of Lemma
8.5.

Lemma 9.3. Let s 6= x and t 6= y. Consider the equations

(a) xy2z . . . ⇉ zx2y . . .,

(b) xyzs . . . ⇉ zx2y . . .,

(c) xy2z . . . ⇉ zxyt . . .,

(d) xyzt . . . ⇉ zy2x . . .,

(e) xyz . . . ⇉ zy2x . . ..

the first has a supporting tree and the others have basic trees.

Proof. Let E0 be one of (a)–(d). It can be written in the form xyazypu . . . ⇉

zybxyqv . . ., where u, v 6= y. Here always a+ p 6= b+ q. Let l ≥ 8+ |p− q| be
even. Form a complete set of θ-images for E0, a complete set of θ-images for
each of these, and so on l times. These θ-images form chains E0, . . . , El. We
show that each chain has an equation with the required tree. This proves
the lemma.

First, consider chains of degenerated θ-images. There is a corresponding
degenerated chain of ordinary images. Now, by N7, the equation El can be
replaced by one of the following:

(a’) xy2z . . . ⇉ zxy2 . . .

(b’) xyz . . . ⇉ zxy . . .

(c’) xy2z . . . ⇉ zxy2 . . .

(d’) xyzy . . . ⇉ zy2x . . . .

Equation (b’) is basic of the form B3. Equations (a’) and (c’) are reduced
by the substitution x 7→ zx to equations of Lemma 8.5. Equation (d’)
is reduced to the equation xyzyP = y2zxQ, which can be transformed to
yzyx . . . = xzy2 . . . by N5 and N4. This has a basic tree by Lemma 8.5.

Second, consider nondegenerated chains. Assume that the part E0, . . . , Ej−1

of the chain is degenerated and that Ej is a nondegenerated θ-image of Ej−1.
If E0 is of the form (a) – (c), then Ej−1 is of the same form and Ej has the
required tree by Lemma 9.2 or Lemma 8.8. If E0 is of the form (d), then all
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of E0, . . . , Ej−1 are of type I. Let 0 ≤ i < j. If i is even, then Ei is of the form
xyz . . . ⇉ zy2x . . .. If i is odd, then Ei is of the form zy2x . . . ⇉ xyz . . ..
Assume first that j is even. Now Ej is of the form yxzr . . . ⇉ zy2x . . .,
where r 6= z. This is the equation (b). Assume then that j is odd. Now Ej

is of the form y2 . . . ⇉ xy . . . or yzy . . . ⇉ xyz . . .. These are basic of the
form B2 and B3.

The lemma has been proved for equations (a) – (d). The equation (e) is
of the form (d) or (d’), so it has a basic tree.

Lemma 9.4. Supporting equations of the form (23) have basic trees.

Proof. First, consider the equation xaybt . . . ⇉ zyx . . ., where 1 ≤ a, b ≤ 2
and t 6= y. If a = b = 1, then this is basic of the form B4. If a = 1 and
b = 2, then this of type I and its images are of the form zyx . . . ⇉ xy2z . . .
or yzxs . . . ⇉ xy2z . . ., where s 6= x. These have basic trees by Lemma 9.3.
Assume that a = 2. The equation is reduced by the substitutions x 7→ zx,
x 7→ zyx to the equations xzxy . . . ⇇ yzxs . . . and xzy . . . = zyx . . ., where
s 6= x. The latter is basic of the form B5. If in the former s = y, then it is
reduced by the substitution y 7→ xy to the equation of Lemma 8.5. If s = z,
then the images of the equation are of the form yzxz . . . ⇇ Dy, where D is
a conjugate of xzx. If D = xzx, then this image is basic of the form B4. If
D = zx2, then it is the equation (c) of Lemma 9.3. If D = x2z, then it is
the equation of Lemma 8.6.

Second, consider the equation xaybt . . . ⇉ zxy . . ., where 1 ≤ a, b ≤ 2
and t 6= y. If a = 2 or a = b = 1, then this is basic of the form B2 or
B3. Assume that a = 1 and b = 2. If the fourth letter on the right is y,
then the equation is reduced by the substitution x 7→ zx to the equation of
Lemma 8.5. Otherwise, the θ-images of the equation are, by 2 of Lemma 9.1,
basic equations or of the form xy2z . . . ⇉ zxyx . . . or yxzy . . . ⇉ zxzy . . ..
The former has a basic tree by Lemma 9.3, the latter is reduced by the
substitution y 7→ zy to the equation of Lemma 8.5.

Lemma 9.5. The equation x2yt . . . ⇉ zyzxy . . ., where t 6= y, has a basic
tree.

Proof. The images of this equation have basic trees by Lemma 9.4, except
for the image under the morphism x 7→ zx:

xzxyz . . . ⇇ yz2xy . . . .

This is reduced by the substitution y 7→ xy to the equation zx2yz . . . =
yz2x2 . . .. Consider the corresponding one-sided equations.

The images of the equation

zx2yz . . . ⇉ yz2x2 . . . (25)

30



are of the form zx2yyiz . . . ⇇ yzyizx2 . . ., and the images of this under the
morphisms y 7→ zy, y 7→ zxy, y 7→ zx2y and under other morphisms are

x2(zy)i+1 . . . ⇉ yz(zy)izx2 . . . , (26)

xzx . . . ⇉ yz2x . . . , (27)

zx2yzx . . . ⇉ yz2x2y . . . , (28)

Dyzx . . . ⇉ yz2x2z . . . , (29)

where D is a conjugate of zx2. The last two can be split into pairs of
equations zx2yz ⇉ yz2x2, x . . . = y . . . and Dyz ⇉ yz2x2, x . . . = z . . ..
These have only trivial solutions by Corollary 2.5. Consider the first two
equations. They are nondegenerated images, so their images are θ-images of
(25). These are equations of Lemma 9.4, except for the image of (26) under
the morphism x 7→ yx:

xyx(zy)i+1 . . . ⇇ z2(yz)i(yx)2 . . . .

All images of this are again equations of Lemma 9.4, except for the image
under the morphism z 7→ xz:

yx(xzy)i+1 . . . ⇉ zxz(yxz)i(yx)2 . . . .

This is reduced to the equation

yx(xz2y)i+1 . . . = xz(zyxz)i(zyx)2 . . . ,

which can be split into the pair of equations yx2z2 = xz2yx, y . . . = z . . .,
which has only trivial solutions by Corollary 2.5. So (25) has a basic tree.

The images of the equation zx2yz . . . ⇇ yz2x2 . . . are of the following
forms:

x2zyz . . . ⇉ yz2x2 . . . , (30)

xzxyz . . . ⇉ yz2x2 . . . , (31)

zx2yz . . . ⇉ yz2x2 . . . . (32)

The images of (31) are equations of Lemma 9.4. The equation (32) is of the
form (25). The images of (30) are equations of Lemma 9.4, except for the
image under the morphism x 7→ yx:

xyxzyz . . . ⇇ z2(yx)2 . . . .

All images of this are again equations of Lemma 9.4, except for the image
under the morphism z 7→ xz:

yx2zyxz . . . ⇉ zxz(yx)2 . . . .
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This is reduced to the equation

yx2z2yxz . . . = xz(zyx)2 . . . ,

which can be split into the pair of equations yx2z2 = xz2yx, y . . . = z . . .,
which has only trivial solutions by Corollary 2.5.

Lemmas 9.4 and 9.5 prove that if an equation has a supporting tree, then
it has a basic tree.

Theorem 9.6. Every supporting equation has a basic tree.

Proof. By Lemma 9.4, it is enough to consider equations (24).
If a = b = 1, then the equation is xyt . . . ⇉ z(yz)dx . . .. Every image of

this equation has a basic tree by Lemma 9.4.
If a = 1 and b = 2, then the equation is xy2t . . . ⇉ z(yz)dx . . .. Its

images are of the forms

xy2z . . . ⇇ zyz . . . , (33)

xy2z . . . ⇇ yzy . . . , (34)

xy2z . . . ⇇ yz2s . . . , (35)

xy2z . . . ⇇ z2yt . . . , (36)

where s 6= z, t 6= y. All images of (33) are of the form (23). All θ-images
of (34) are, by 4 of Lemma 9.1, basic equations, supporting equations (23),
or equations (b) of Lemma 9.3. All θ-images of (34) are, by 3 of Lemma
9.1, equations of Lemmas 9.3, 9.4 or 9.5. All images of (36) are supporting
equations (23), except for the image under the morphism z 7→ xz, which is
the equation of Lemma 9.5.

If a = 2, then the equation is x2ybt . . . ⇉ z(yz)dx . . .. Its images are
supporting equations (23), except for the image under the morphism x 7→ zx:

xzxy . . . ⇉ (yz)dzx . . . .

If d ≥ 1, then the images of this equation are supporting equations (23). If
d = 1, then this is the equation (24) with a = 1 and b = 2.

10 Main theorem

Lemma 10.1. The equation xyazyps . . . ⇉ zybxyqt . . ., where a > 0, a+p =
b + q and s, t 6= y, has a basic tree.

Proof. If a = 1 and b = 0, then the equation is basic of the form B8.
Consider other cases. The equation is reduced by the substitutions x 7→ zycx
(c = 0, . . . , b) to the equations

xyaz . . . ⇇ yb−czycx . . . (c = 0, . . . , b − 1), (37)

xyazypsP = zybxyqtQ. (38)
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When b− c > 1, the equation (37) is basic of the form B2. When b− c = 1,
its θ-images have a basic tree by 4 of Lemma 9.1 and by Lemmas 9.3 and
9.4.

If a = b, the equation (38) is basic of the form B6 or B7. Assume
that a < b; the case a > b is similar. By using N5 and N4 we get the
equation ydzyax . . . = xybz . . ., where d = b − a ≥ 1. Split this into one-
sided equations

ydzyax . . . ⇉ xybz . . . , (39)

ydzyax . . . ⇇ xybz . . . . (40)

If d > 1, then (39) is basic of the form B2. If d = 1, then its θ-images have
a basic tree by 4 of Lemma 9.1 and by Lemmas 9.3 and 9.4. The equation
(40) is reduced by the substitutions x 7→ ycx (c = 1, . . . , d) to the equations

yd−czya+cx . . . ⇉ xybz . . . and zya+dx . . . = xybz . . . .

Latter is basic of the form B6 or B7, former is of the form (39).

Lemma 10.2. The equation E0 : xyaz . . . ⇉ zybx . . ., where a > 0, has a
basic tree.

Proof. The equation can be written in the form xyazypu . . . ⇉ zybxyqv . . .,
where u, v 6= y. If a + p = b + q, then the claim follows from Lemma 10.1.
Assume that a + p 6= b + q. Let l ≥ 8 + |p− q| be even. Like in Lemma 9.3,
form a complete set of θ-images of E0, a complete set of θ-images of these,
and so on l times. These θ-images form chains E0, . . . , El. We show that
each chain has an equation with a basic tree; this proves the claim.

First, consider chains of degenerated θ-images. There is a corresponding
chain of ordinary images and we can use the rule N7. The equation El is
replaced by the equation xyazybxP ⇉ zybxyazQ, which has a basic tree by
Lemma 10.1.

Second, consider nondegenerated chains. Assume that the part E0, . . . , Ej−1

of the chain is degenerated and that Ej is a nondegenerated θ-image of Ej−1.
If b = 0, the equation E0 is of the form xyaz . . . ⇉ zx . . ., and Ej−1 is of the
same form. Now by 1 of Lemma 9.1, Ej is a supporting equation and thus
has a basic tree. If b > 0, then E0 is of the form xyaz . . . ⇉ zybx . . .. Equa-
tion Ej−1 is of the same form. Now Ej is of the form yczydx . . . ⇉ xyaz . . .,
where c + d = a and c ≥ 1. If c > 1, then Ej is basic of the form B2. If
c = 1, then Ej has a basic tree by 4 of Lemma 9.1 and by Lemmas 9.3 and
9.4.

Lemma 10.3. The equation xyat . . . ⇉ zcxB(x, z)y . . ., where a, c ≥ 1 and
t 6= y, has a basic tree.

Proof. By 1 of Lemma 9.1, all θ-images of this equation are supporting
equations or equations of Lemma 10.2.
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Lemma 10.4. The equation xnymt . . . ⇉ zyA(y, z)x . . ., where n,m ≥ 1
and t 6= y, has a basic tree.

Proof. If n = 1, every image of the equation is of the form

xymz . . . ⇇ Dx . . . , (41)

where D is a conjugate of zyA. If n > 1, the image of the equation under
the morphism x 7→ zx is

x(zx)n−1y . . . ⇇ yAzx . . . , (42)

and all the other images are of the form

xzy . . . ⇇ Dx . . . , (43)

where D is a conjugate of zyA.
Consider equation (41). If y2 ≤ D, then this is basic of the form B2. If

yz ≤ D, then this is the equation of Lemma 10.3. If z ≤ D, then this is of
the form

xaybs . . . ⇉ zydx . . . , (44)

where a, b, d ≥ 1 and s 6= y. The case of equation (43) is similar. The
equation (42) is of the form

xaybs . . . ⇉ z(yz)dx . . . , (45)

where a, b, d ≥ 1 and s 6= y. It is enough to prove that equations (44) and
(45) have basic trees.

Consider equation (44). Assume first that a = 1. Now every image
of this equation is of the form xybz . . . ⇇ Dx, where D is a conjugate of
zyd. If z ≤ D, then this is the equation of Lemma 10.2. If y2 ≤ D, this
is basic of the form B2. If yz ≤ D, then this is the equation of Lemma
10.3. Assume then that a > 1. Now the image of the equation under the
morphism x 7→ zx is x(zx)a−1y . . . ⇇ ydzx . . ., and all other images are of
the form xzy . . . ⇇ Dx . . ., where D is a conjugate of zyd. First of these is
of type I and its images have basic trees by Theorem 9.6. The latter is the
equation of Lemma 10.3, if zy ≤ D; otherwise its images have basic trees by
Theorem 9.6.

Consider equation (45). Assume first that a = 1. Now every image of
this equation is of the form xybz . . . ⇇ Dx, where D is a conjugate of z(yz)d.
If yz ≤ D, this is the equation of Lemma 10.3. Otherwise Dx = zcys, where
1 ≤ c ≤ 2 and s 6= y, and this image is of the form (44) and has a basic
tree. Assume then that a > 1. Now the image of the equation under the
morphism x 7→ zx is x(zx)a−1y . . . ⇇ (yz)dzx . . ., and all other images are
of the form xzy . . . ⇇ Dx . . ., where D is a conjugate of z(yz)d. First of
these goes back to the case a = 1. The latter has a basic tree by Lemma
9.4.
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Theorem 10.5. Every equation of length n with three unknowns has a basic
tree of height O(n).

Proof. The trivial equation U = U is a basic equation. All other equations
can be reduced from the left and split into one-sided equations. By multi-
plication from the right, every one-sided equation can be turned into one of
the equations

x2 . . . ⇉ ycx . . . (46)

xy . . . ⇉ ycx . . . (47)

xzat . . . ⇉ ycxB(x, y)z . . . (48)

xaybs . . . ⇉ yczB(y, z)x . . . (49)

xazbt . . . ⇉ yzB(y, z)x . . . (50)

xazbt . . . ⇉ ydzB(y, z)x . . . , (51)

where a, b, c ≥ 1, d > 1, t 6= z and s 6= y. We prove that all of these have
basic trees.

Equation (46) is basic of the form B2. Equation (47) is reduced by the
substitution x 7→ yx to the equation xy . . . = ycx . . ., which is basic of the
form B1. Equation (48) is the equation of Lemma 10.3. Equation (50) is
the equation of Lemma 10.4.

The equation (49) is of type I and its images are of the form xy . . . ⇇

Dx . . ., where D is a conjugate of yczB. If y2 ≤ D, then this is of the form
(46), if yz ≤ D, then of the form (48), and if z ≤ D, then of the form (50).
So every image of the equation (49) and thus the equation itself has a basic
tree.

The equation (51) is of type I and its images are of the form x(y . . .)a−1zby . . . ⇇

Dx . . ., where D is a conjugate of ydzB. Again it is of the form (46), (48) or
(50). So every image of the equation (49) and thus the equation itself has a
basic tree.

The constructions of trees in the lemmas produce trees of bounded length
with two exceptions: Lemmas 9.3 and 10.2, where a tree with height of order
|p − q| is constructed for the equation

xyazyp . . . ⇉ zybxyq . . . . (52)

We prove that the powers of y here cannot be more than n, which proves
this theorem. In the definition of neighborhood, the rules N1, N2, N5 and
N6 can produce higher powers than those in the initial equation. There is
no need to use N6 to generate high powers and N5 is only used in Lemmas
8.5, 9.3 and 10.1, where it does not generate high powers. Consider N1
and N2. Here an equation xU(x, y, z) ⇉ yaxV (x, y, z) can be turned into
xU(yix, y, z) ⇇ yaxV (yix, y, z) for high values of i. But in order for y to be
in the position of (52), the rules N1 or N2 must be used again. Then y is
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replaced by xuy for some u ∈ {x, z}∗ and the powers of y disappear. The
claim is proved.

In the next theorem exp2 denotes the double exponential function exp ◦ exp.

Theorem 10.6. Every equation of length n with three unknowns has a para-
metric solution of length exp2(O(n)).

Proof. By Theorem 10.5, every equation has a basic tree of height O(n).
By Theorem 6.2, the leaf equations have parametric solutions of bounded
length. Now from Theorem 8.4 it follows that E has a parametric solution
of length O(n)52·27

k

, where k = O(n), that is of length exp2(O(n)).
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