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Abstract. We consider with a new point of view the notion of nth
powers in connection with the k-abelian equivalence of words. For a
fixed natural number k, words u and v are k-abelian equivalent if ev-
ery factor of length at most k occurs in u as many times as in v. The
usual abelian equivalence coincides with 1-abelian equivalence. Usually
k-abelian squares are defined as words w for which there exist non-empty
k-abelian equivalent words u and v such that w = uv. The new way to
consider k-abelian nth powers is to say that a word is strongly k-abelian
nth power if it is k-abelian equivalent to an nth power. We prove that
strongly k-abelian nth powers are not avoidable on any alphabet for any
numbers k and n. In the abelian case this is easy, but for k > 1 the proof
is not trivial.
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1 Introduction

In combinatorics on words the theory of avoidability is one of the oldest and most
studied topics. Axel Thue, who proved at the beginning of 20th century the ex-
istence of an infinite binary cube-free word and an infinite square-free ternary
word, can be referred to as the initiator of this area[12, 13]. Corresponding avoid-
ability questions for abelian equality, the commutative variant of equality where
only the number of each letter counts and not their order, have been studied
since late 1960s. Dekking [3] has proved that the optimal value for the size of
the alphabet where abelian cubes are avoidable is three. The problem of the min-
imal size of the alphabet in which abelian squares can be avoided was an open
question for a long time until the optimal value, four, was found by Keränen [8].

Lately, new variants of the avoidability problems have been introduced by
defining repetitions via k-abelian equivalence, see e.q. [4]. This new equivalence
relation, where k ≥ 1 is a natural number, lies properly in between equality and
abelian equality. The obvious modifications of the above Thue’s problems ask
for what are the smallest alphabets where k-abelian squares and cubes can be
avoided. It is known that for k ≥ 3 k-abelian cubes can be avoided over a binary
alphabet [10]. In a case of square-freeness it is known that 2-abelian squares
can not be avoided over a ternary alphabet but for large enough values of k
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avoidability is achieved [4, 6]. In [5] it is shown that k-abelian square-free word
cannot be obtained by iterating a single prefix preserving morphism.

In this note we consider abelian and k-abelian avoidability with a new per-
spective. We say that a word w is a strongly abelian nth power if it is abelian
equivalent to a word which is a usual nth power, i.e., concatenation of n equiva-
lent words. Now if an abelian equivalence class contains a word which is a usual
nth power then all the words in this equivalence class are strongly abelian nth
powers. So we consider the word more like a representative of its equivalence
class than a single word. Corresponding notion of a strongly k-abelian nth power
can be introduced similarly. We prove that every infinite word contains strongly
k-abelian nth powers for all values of k and n.

2 Preliminaries

For the basic terminology of words as well as avoidability we refer to [9] and [2].
Here we define only our basic notions for this note.

Definition 1. Let k ≥ 1 be a natural number. We say that words u and v in
Σ+ are k-abelian equivalent, in symbols u ∼k v, if

1. prefk−1 (u) = prefk−1 (v) and sufk−1 (u) = sufk−1 (v), and
2. for all w ∈ Σk, the number of occurrences of w in u and v coincide, i.e.

|u|w = |v|w.
3. Different words of length at most k are not k-abelian equivalent.

The k-abelian equivalence is like a sharpening of abelian equivalence and
for the value k = 1 these define the same equivalence relation. For more about
this notion, see [7]. In fact, k-abelian equivalence is a congruence of words,
i.e. an equivalence relation R such that uvRu′v′ whenever uRu′ and vRv′. We
are interested in the products of words which are k-abelian equivalent but we
will first define squares for all congruences R. Higher powers can be defined
analogously.

If u, v are congruent words, then their product uv is an R-square. This def-
inition has been used in the study of abelian and k-abelian repetition-freeness.
In this article, however, we concentrate on another definition:

Definition 2. A word w is a strongly R-square if it is congruent to a square of
some non-empty word v, i.e. wRvv.

For example, aabb is not an abelian square because aa and bb are not abelian
equivalent, but it is a strongly abelian square because it is abelian equivalent to
(ab)2.

Square-freeness in partially commutative monoids was studied by Carpi and
De Luca in [1]. Their approach to square-freeness is similar but not identical to
the one in this paper. Another interesting related concept is that of approximate
squares, which can be defined as words of the form uv, where the Hamming



distance of u and v is “small enough” (this definition is analogous to the definition
of R-squares), or equivalently as words w such that the Hamming distance of w
and some square is “small enough” (this definition is analogous to the definition
of strongly R-squares). The avoidability of approximate squares has been studied
by Ochem, Rampersad and Shallit [11].

Lemma 3. A word is a strongly R-square if and only if it is congruent to an
R-square.

Proof. The “only if” direction is clear. If w is congruent to an R-square, say
wRuv and uRv, then wRuu, because uRv implies uvRuu (here the assumption
that R is not just an equivalence relation but a congruence is used). ut

It could be said that strongly R-squares take the concept of squares farther
away from words and closer to the monoid defined by R.

Let us now state the definitions of strongly abelian and k-abelian nth powers
for any n ≥ 1.

Definition 4. A word w is a strongly abelian nth power if it is abelian equivalent
to a word which is an nth power.

Definition 5. A word w is a strongly k-abelian nth power if it is k-abelian
equivalent to a word which is an nth power.

The basic problem we are considering is avoidability of strongly abelian and
strongly k-abelian nth powers. We prove that, for all k and n, they are unavoid-
able on all finite alphabets.

3 Unavoidability of Strongly Abelian and k-Abelian
n-Powers

First we show that in abelian case it is easy to see that there does not ex-
ist infinite word which would avoid a strongly abelian nth power. Recall that
two words are abelian equivalent if and only if they have the same Parikh vec-
tors. Parikh vector p is a function from the set of words over m-letter alphabet
{a1, a2, . . . , am} to the set of m-dimensional vectors over natural numbers, where
p(w) = (|w|a1 , |w|a2 , . . . , |w|am

).

Theorem 6. Let Σ be an alphabet and let n ≥ 2. Every infinite word w ∈ Σω

contains a non-empty factor that is abelian equivalent to an nth power.

Proof. A word is abelian equivalent to an nth power if and only if its Parikh
vector is zero modulo n. The number of different Parikh vectors modulo n is
finite, so w has two prefixes u and uv such that their Parikh vectors are the
same modulo n. Then the Parikh vector of v is zero modulo n, so v is abelian
equivalent to an nth power. ut



Theorem 6 can be generalized for k-abelian equivalence, but this is not trivial.
One important difference between abelian and k-abelian equivalence is that if
a vector with non-negative elements is given, then a word having that Parikh
vector can be constructed, but if for every t ∈ Σk a non-negative number nt

is given, then there need not exist a word u such that |u|t = nt for all t (see
Example 10).

Perhaps the biggest difficulty in generalizing Theorem 6 lies in finding an
analogous version of the fact that a word is abelian equivalent to an nth power
if and only if its Parikh vector is zero modulo n. On the one direction we have:

Lemma 7. If a word v of length at least k− 1 is k-abelian equivalent to an nth
power, then

|v|t + |sufk−1(v)prefk−1(v)|t ≡ 0 (mod n) (1)

for all t ∈ Σk.

Proof. Let v be k-abelian equivalent to un. Then

|v|t + |sufk−1(v)prefk−1(v)|t = |vprefk−1(v)|t
=|unprefk−1(v)|t = |unprefk−1(u

n)|t = n|uprefk−1(u
n)|t ≡ 0 (mod n)

for all t ∈ Σk. ut

The converse does not hold. For example, v = babbbbab satisfies (1) for n = 2
and k = 3 but it is not 3-abelian equivalent to any square. However, the converse
does hold if |v|t is either large enough or zero for every t. This is formulated
precisely in Lemma 11. To prove this we need the following definitions and
Lemma 8. These were used in [7] to estimate the number of k-abelian equivalence
classes.

Let s1, s2 ∈ Σk−1 and let

S(s1, s2, n) = Σn ∩ s1Σ
∗ ∩Σ∗s2

be the set of words of length n that start with s1 and end with s2. For every
word u ∈ S(s1, s2, n) we can define a function

fu : Σk → {0, . . . , n− k + 1}, fu(t) = |u|t.

If u, v ∈ S(s1, s2, n), then u ∼k v if and only if fu = fv.
If a function f : Σk → N0 is given, then a directed multigraph Gf can be

defined as follows:

– The set of vertices is Σk−1.
– If t = s1a = bs2, where a, b ∈ Σ, then there are f(t) edges from s1 to s2.

If f = fu, then this multigraph is related to the Rauzy graph of u.
As stated above, the following lemma was proved in [7]. The proof is simple,

so it is repeated here for completeness. Here deg− denotes the indegree and deg+

the outdegree of a vertex in Gf .



Lemma 8. For a function f : Σk → N0 and words s1, s2 ∈ Σk−1, the following
are equivalent:

(i) there is a number n and a word u ∈ S(s1, s2, n) such that f = fu,
(ii) there is an Eulerian path from s1 to s2 in Gf ,
(iii) the underlying graph of Gf is connected, except possibly for some isolated

vertices, and deg−(s) = deg+(s) for every vertex s, except that if s1 6= s2,
then deg−(s1) = deg+(s1)− 1 and deg−(s2) = deg+(s2) + 1,

(iv) the underlying graph of Gf is connected, except possibly for some isolated
vertices, and ∑

a∈Σ

f(as) =
∑
a∈Σ

f(sa) + cs

for all s ∈ Σk−1, where

cs =


−1, if s = s1 6= s2,

1, if s = s2 6= s1,

0, otherwise.

Proof. (i) ⇔ (ii): u = a1 . . . an ∈ S(s1, s2, n) and f = fu if and only if

s1 = a1 . . . ak−1 → a2 . . . ak → · · · → an−k+2 . . . an = s2

is an Eulerian path in Gf .
(ii) ⇔ (iii): This is well known.
(iii) ⇔ (iv): (iv) is just a reformulation of (iii) in terms of the function f . ut

Example 9. Let k = 3 and consider the word u = aaabaab. The multigraph Gfu

is
ab

��
aa

77 FF

��
baoo

The word u corresponds to the Eulerian path

aa → aa → ab → ba → aa → ab.

There is also another Eulerian path from aa to ab:

aa → ab → ba → aa → aa → ab.

This corresponds to the word aabaaab, which is 3-abelian equivalent to u.

Example 10. We consider some functions f : {a, b}2 → N0.
If f(aa) = f(bb) = 1 and f(t) = 0 otherwise, then the underlying graph of

Gf is not connected, so there does not exist a word u such that f = fu.
If f(ab) = 2 and f(t) = 0 otherwise, then the indegree of a in Gf is zero but

the outdegree is two, so there does not exist a word u such that f = fu.



Lemma 11. If

|v|t + |sufk−1(v)prefk−1(v)|t ≡ 0 (mod n) (2)

and either |v|t > (n − 1)(k − 1) or |v|t = 0 for all t ∈ Σk, then v is k-abelian
equivalent to an nth power.

Proof. Let s1 = prefk−1(v) and s2 = sufk−1(v). By Lemma 8,∑
a∈Σ

fv(as) =
∑
a∈Σ

fv(sa)+cs and
∑
a∈Σ

fs2s1(as) =
∑
a∈Σ

fs2s1(sa)−cs (3)

for all s ∈ Σk−1, where

cs =


−1, if s = s1 6= s2,

1, if s = s2 6= s1,

0, otherwise.

By (2), a function f : Σk → N0 can be defined by

f(t) =
fv(t)− (n− 1)fs2s1(t)

n
.

By (3), ∑
a∈Σ

f(as) =
∑
a∈Σ

f(sa) + cs

for all s ∈ Σk−1. If fv(t) > 0, then

fv(t) = |v|t > (n− 1)(k − 1) ≥ (n− 1)fs2s1(t)

and thus f(t) > 0. This means that since the underlying graph of Gfv is con-
nected, also the underlying graph of Gf must be connected. By Lemma 8, there
is a word u ∈ S(s1, s2, |u|) such that f = fu. Then un begins with s1 and ends
with s2 and

|un|t = n|u|t + (n− 1)|s2s1|t = nf(t) + (n− 1)fs2s1(t) = fv(t) = |v|t

for all t ∈ Σk, so un is k-abelian equivalent to v. ut

Now we are ready to express the main result of strongly k-abelian avoidability.

Theorem 12. Let Σ be an alphabet and let k, n ≥ 2. Every infinite word w ∈
Σω contains a non-empty factor that is k-abelian equivalent to an nth power.

Proof. For a prefix u of w, consider the pair (fu mod n, sufk−1(u)). The number
of different pairs is finite, so w has infinitely many prefixes u1, u2, . . . such that
their pairs are the same. Let i be such that no factor of length k appearing only
finitely many times in w appears after ui. Let j > i be such that if uj = uiv,



then every other factor of length k appears at least (n − 1)(k − 1) times in v.
Then

|v|t + |sufk−1(v)prefk−1(v)|t = |sufk−1(v)v|t = |sufk−1(ui)v|t
=|uiv|t − |ui|t = fuj

(t)− fui
(t) ≡ 0 (mod n)

for all t ∈ Σk. Thus v satisfies the conditions of Lemma 11 and v is k-abelian
equivalent to an nth power. ut

4 Further Questions

Some further questions that might be asked on strongly k-abelian powers are:

– How many k-abelian equivalence classes of words of length l contain an nth
power?

– How many words there are in those equivalence classes, i.e. how many words
of length l are strongly k-abelian nth powers?

– What is the length of the longest word avoiding strongly k-abelian nth pow-
ers?

– How many words avoid strongly k-abelian nth powers?

The answers depend on k, n, l and the size of the alphabet. The analysis of these
questions is outside the scope of this extended abstract, but a few remarks can
be made.

First, it is easy to prove that two squares uu and vv are k-abelian equivalent if
and only if u and v are. Thus the number of k-abelian equivalence classes of words
of length 2l containing a square is the number of k-abelian equivalence classes
of words of length l. This number has been estimated in [7] and is polynomial
with respect to l.

Second, some of the equivalence classes contain exponentially many words.
For example, a word on the alphabet {a, b} is 2-abelian equivalent to (am(ab)m)2

if and only if it has the same length, begins with a, ends with b, contains no two
consecutive b’s and contains 2m b’s. The number of such words is exponential
with respect to m.

Example 13. In {a, b}12 there are

– 64 squares,
– 168 2-abelian squares,
– 924 abelian squares,
– 1024 strongly 2-abelian squares,
– 2048 strongly abelian squares,
– 4096 words.

Those 1024 strongly 2-abelian squares belong to 32 different equivalence classes
and strongly abelian squares belong to 7 different equivalence classes. Repre-
sentatives for each of these seven classes over a binary alphabet are as follows:
a12, a10b2, a8b4, a6b6, a4b8, a2b10, b12.



5 Conclusion

We have shown that for k, n ≥ 2 every infinite word contains a non-empty
factor which is strongly abelian nth power as well as a non-empty factor which
is strongly k-abelian nth power. As is known, usual abelian nth powers can be
avoided depending on the value of n and the size of the alphabet. Corresponding
results are also known for k-abelian powers. Other questions arising from the
notion of strongly k-abelian equivalence are, for example, counting the number
of words of length l that contain strongly k-abelian nth powers, or counting the
number of strongly k-abelian nth powers of length l.
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