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Abstract

We consider a recently defined notion of k-abelian equivalence of words in con-
nection with avoidability problems. This equivalence relation, for a fixed natural
number k, takes into account the numbers of occurrences of the different factors
of length k and the prefix and the suffix of length k − 1. We search for the
smallest alphabet in which k-abelian squares and cubes can be avoided, respec-
tively. For 2-abelian squares this is four – as in the case of abelian words, while
for 2-abelian cubes we have only strong evidence that the size is two – as it is
in the case of words. However, we are able to prove this optimal value only for
8-abelian cubes.
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1. Introduction

In Combinatorics on Words the theory of avoidability is one of the oldest
and most studied topics, and Axel Thue can be referred to as the initiator of this
area with the first results at the beginning of 20th century [Th1, Th2]. Thue
proved, for example, the existence of an infinite binary word not containing any
factor of the word three times consecutively, that is the existence of a cube-
free word. Similarly, he showed that squares can be avoided in infinite ternary
words.

Avoidability questions have been studied since late 1960s for abelian equality,
the commutative variant of equality where only the number of each letter counts
and not their order. Evdokimov [Ev] showed apparently as the first nontrivial
result that commutative squares could be avoided in infinite words over a 25-
letter alphabet. The size of the alphabet was reduced to five by Pleasant [Pl]
and the optimal value, four, was found by Keränen [Ke]. Dekking [De] managed
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to prove already earlier that the optimal value for the size of the alphabet where
abelian cubes are avoidable is three.

We introduce in this note new variants of the problems by defining repetitions
via new equivalence relations which lie properly in between equality and abelian
equality. For this relation we use a notion k-abelian equivalence, where k ≥ 1
is a natural number. We notice that 1-abelian equivalence means the usual
abelian equivalence. Modifying the above Thue’s problems we ask for what are
the smallest alphabets where k-abelian squares and cubes can be avoided. A
goal of this note is to point out that these problems are not trivial even for
small values of k and that in some cases the behaviour of k-abelian equivalence
is similar to the word equivalence and in some cases to the abelian equivalence.
The main result is to show the existence of an infinite 8-abelian cube-free word
over binary alphabet.

2. Basic notions and problems

For the basic terminology of words as well as avoidability we refer to [Lo] and
[CK]. Here we define only our basic notions and problems. Our basic notion is
k-abelian equivalence of words, see [KSZ]. Let k ≥ 1 be a natural number. We
say that words u and v in Σ+ are k-abelian equivalent, in symbols u ≡a,k v, if

1. prefk−1 (u) = prefk−1 (v) and sufk−1 (u) = sufk−1 (v), and

2. for all w ∈ Σk, the number of occurrences of w in u and v coincide, i.e.
|u|w = |v|w.

Here prefk−1 (resp. sufk−1) is used to denote the prefixes (resp. suffixes) of
length k − 1.

It is straightforward to see that ≡a,k is an equivalence relation. Because of
the first condition, it is also a congruence, that is u ≡a,k u′ and v ≡a,k v′ imply
uv ≡a,k u′v′.

The first condition also makes the relation a sharpening of abelian equality.
It allows us to count the number of occurrences of each letter by counting the
occurrences of the letters in each factor of length k and taking into account the
special role of the letters of the prefix and the suffix of length k − 1. Indeed,
words aba and bab have the same number of occurrences of the factors of length
2 but they are not abelian equivalent.

More generally, k-abelian equality implies (k − 1)-abelian equality, so

u = v ⇒ u ≡a,k v ⇒ u ≡a,k−1 v ⇒ · · · ⇒ u ≡a,2 v ⇒ u ≡a v,

where ≡a denotes the abelian equivalence (which is the same as 1-abelian equiv-
alence). Also

u = v ⇔ u ≡a,k v ∀ k ≥ 1.

Now, notions like k-abelian repetitions are naturally defined. For instance,
w = uv is a k-abelian square if and only if u ≡a,k v. The basic problem we are

2



considering is k-abelian avoidability. We ask what is the size of the smallest
alphabet where k-abelian squares or cubes can be avoided for a fixed k. We
recall that an alphabet avoids, for example, k-abelian squares if there exists
such an infinite word over this alphabet that it does not contain any k-abelian
squares as a factor.

3. Preliminaries

Before concentrating on k-abelian avoidability we mention examples of two
morphisms in classical area. We use a special technique to prove that these
particularly simple morphisms generate a binary cube-free and a ternary square-
free word. There are some similarities with the technique used in the proof of
main theorem, i.e., the form of the morphism restricts in an obvious way the
possible lengths of squares and gives an easy way to determine the positions of
some factors in the infinite word.

Example 1. (Due to a solution of P. Sarvamaa in a course on Combinatorics
on Words at University of Turku.) Consider the morphism

h :

{
a 7→ aab

b 7→ abb
,

that is h(x) = axb for x ∈ {a, b}. It defines a cube-free word, as is particularly
simple to see. Let

w = h∞(a) =
∞∏

i=1

axib,

where each xi ∈ {a, b} and, moreover,

w = h−1(w) = x1x2 . . . . (1)

Now, assume that w contains a shortest cube u1u2u3 with u1 = u2 = u3 = u. If
|u| would not be divisible by three, then the first letters of u1, u2 and u3 would
be in different positions inside the factors axib and hence both a and b would
be among these first letters. So |u| must be divisible by three. Denote by vi,
for i = 1, 2, 3, the scattered subword of ui formed by the occurrences of xj in
ui. Since |u| is divisible by three, necessarily v1 = v2 = v3, and hence by (1) w
contains a shorter cube v1v2v3, which is a contradiction.

Example 2. Let h and w be as in Example 1. The critical exponent of w is 3.
This can be seen as follows. If w has a factor uauau, then it also has a factor
v = buauaub, and thus a factor h(v) = abbh(u)aabh(u)aabh(u)abb. Now h(v)
contains a factor u′au′au′, where u′ = bh(u)a. Because aa is a factor of w, it
follows by induction that w has factors of the form uauau for arbitrarily long
words u.
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Example 3. Consider the morphism

g :


a 7→ abcbacbcabcba

b 7→ bcacbacabcacb

c 7→ cabacbabcabac

.

Let

t = g∞(a) =
∞∏

i=1

xisi,

where xi ∈ {a, b, c}, xisi = g(xi) and, moreover,

t = g−1(t) = x1x2 . . . . (2)

It was proved by Leech [Le] that the infinite word t is square-free. The words
g(a), g(b) and g(c) have equal length, are palindromes and can be obtained
from each other by cyclically permuting the three letters. The morphism g is
the simplest square-free morphism with these symmetry properties, but there
are shorter uniform morphisms that are square-free [Ze].

The square-freeness can be proved in a way that is quite similar to the
proof in Example 1. However, there are more details that need to be checked:
it must be verified that t does not contain a square of a word of length less
than eight, and that the starting position of every factor of length eight is
uniquely determined modulo |g(a)| = 13. These two conditions can be checked
mechanically.

Now, assume that t contains a shortest square u1u2 with u1 = u2 = u. Then
|u| ≥ 8. If |u| would not be divisible by 13, then the prefixes of u1 and u2 of
length eight would be in different positions modulo 13, and hence they would be
different. So |u| must be divisible by 13. Denote by vi, for i = 1, 2, the scattered
subword of ui formed by the occurrences of xj in ui. Since |u| is divisible by 13,
necessarily v1 = v2, and hence by (2) t contains a shorter square v1v2, which is
a contradiction.

Example 4. The word t in Example 3 has a repetition of order 15/8: g(aba)
contains the factor ag(b)a = abcacbacabcacba. The proof in Example 3 can be
modified to show that there are no higher powers.

Research on k-abelian equivalences was initiated and, for example, the char-
acterizations of 2- and 3-abelian equivalence classes over binary alphabet were
given in [HKSS]. From these characterizations it is possible to conclude that the
number of equivalence classes of binary 2-abelian words of length n is n2−n+2
and Θ(n4) in the case of 3-abelian words, see [HKSS]. In the general case the
number of k-abelian equivalence classes of words of length n is polynomial in
n but the degree of the polynomial grows exponentially in k, see [HKSS] and
[KSZ].

Next we discuss k-abelian avoidability and concentrate on the case k = 2.
We try to find the size of the smallest alphabet avoiding 2-abelian squares and
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2-abelian cubes, respectively. Before going into our problems we recall the
following Table 1 which summarizes the results we mentioned at the beginning
and at the same time tells the limits of our problems.

Avoidability of squares Avoidability of cubes
type of rep. type of rep.

size of the alph. = ≡a,2 ≡a size of the alph. = ≡a,2 ≡a

2 − − − 2 + ? −
3 + ? − 3 + + +
4 + + +

Table 1: Avoidability of different types of repetitions in infinite words.

Our next example shows that the ordinary method of iterating a morphism
might not give answers to our problems.

Example 5. In each of the following known cases where a repetition free infinite
word is obtained by iterating a morphism, a 2-abelian cube is found fairly early
from the beginning. If anything else is not mentioned see [AS] for the reference
of the following words.

• Infinite overlap-free Thue-Morse word (morphism: 0 → 01, 1 → 10):

01
︷ ︸︸ ︷
101001

︷ ︸︸ ︷
100101

︷ ︸︸ ︷
101001 011...

• Cube-free infinite word (morphism: 0 → 001, 1 → 011):

001001
︷ ︸︸ ︷
011001

︷ ︸︸ ︷
001011

︷ ︸︸ ︷
001011 011...

• Morphism 0 → 001011, 1 → 001101, 2 → 011001 maps ternary cube-free
words to binary cube-free words, see [Br], but 001011 ≡a,2 001101 ≡a,2

011001, thus images of all words mapped with this morphism contain 2-
abelian cubes.

• A binary sequence called Kolakoski sequence is cube-free, see [Ca] and

[Lep], but not 2-abelian cube-free: 122
︷ ︸︸ ︷
112122

︷ ︸︸ ︷
122112

︷ ︸︸ ︷
112212 112... (It is

an open question whether the Kolakoski sequence is a morphic word.)

• A binary overlap-free word w can also be gained in form w = c0c1c2 . . .,
where cn means the number of zeros (mod 2) in the binary expansion of
n. Again, a 2-abelian cube of length 6 begins as early as from the fifth

letter: w = 0010
︷ ︸︸ ︷
011010

︷ ︸︸ ︷
010110

︷ ︸︸ ︷
011010 011...

By computer checking we were able to decide the size of the smallest alphabet
avoiding 2-abelian squares. This solves our first question mark in Table 1.

Theorem 1. The longest ternary word which is 2-abelian square-free has length
537, which shows that there does not exist an infinite 2-abelian square-free word
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over a ternary alphabet. This longest word is unique up to the permutations of
the letters.

We generated this longest ternary word avoiding 2-abelian squares with a
computer program, for the explicit word, see [HKSS] and [HK]. The correctness
of the result has been checked by two independent computer programs.

We also counted the number of ternary 2-abelian square-free words of each
length. The result of this computer based analysis is shown in Figure 1. The
shape of the function is a bit surprising here!

Figure 1: The number of 2-abelian square-free words with respect to their lengths.

To solve the other question mark in Table 1 we also did some computer check-
ing – and obtained evidence that the answer is likely to be different compared
to the first one.

Example 6. With a computer we were able to construct a binary word of more
than 100 000 letters that still avoids 2-abelian cubes. This shows that there
exist, at least, very long binary 2-abelian cube-free words.

The idea of the program is the same as in the program generating the longest
ternary word avoiding 2-abelian squares. The correctness of the program gen-
erating the word of Example 6 is supported by several independent tests. It has
been checked independently for a few words of lengths up to 10 000 letters gen-
erated by the program that they are indeed 2-abelian cube-free. In addition, we
also checked 2-abelian cube-freeness of the mirror image of the word of length
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100 000 letters and the word obtained by exchanging the letters a and b in this
original word. The results were as expected and this supports the correctness
of the original program. By changing a letter in the word generated by the
program and causing a 2-abelian cube we have checked that the program will
find 2-abelian cubes.

Example 7. We searched the number of binary 2-abelian cube-free words of a
given length by computer analysis. The numbers of the words with lengths from
1 to 60 grow approximately with a factor 1.3 at each increment of the length.
So that the number of binary 2-abelian cube-free words of length 60 is already
478 456 030. And already, with length 12 there exist more binary 2-abelian
cube-free words (254) than ternary 2-abelian square-free words (240).

We also chose some binary 2-abelian cube-free prefixes and counted the
number of suitable extensions for these, i.e. the number of binary 2-abelian
cube-free words having these fixed prefixes. As a result we found examples
of binary 2-abelian cube-free words with a property that the number of their
extensions grows again approximately with a factor 1.3 when increasing the
length of extensions by one.

These examples support the conjecture that there would exist an infinite
binary word that avoids 2-abelian cubes. However, we were not able to prove
this, but as shown in the next section, we were able to conclude this for 8-abelian
cubes.

4. Main result

In the case k = 8 we have an affirmative answer to our problem: 8-abelian
cubes can be avoided in two letter alphabet. It is known that abelian squares
can be avoided in 4-letter alphabet, see [Ke] – a result being far from trivial.
We show that starting from such a word and mapping with a uniform morphism
we can produce an infinite binary 8-abelian cube-free word.

We need the following notation. If u = a0 . . . an−1, where ai are letters and
0 ≤ i ≤ j ≤ n, then we let u[i..j] = ai . . . aj−1.

Theorem 2. Let w ∈ {0, 1, 2, 3}ω be an abelian square-free word. Let k ≤ n and
h : {0, 1, 2, 3}∗ → {0, 1}∗ be an n-uniform morphism that satisfies the following
conditions:

1. if u ∈ {0, 1, 2, 3}4 is square-free, then h(u) is k-abelian cube-free,

2. if u ∈ {0, 1, 2, 3}∗ and v is a factor of h(u) of length 2k − 2, then every
occurrence of v in h(u) has the same starting position modulo n,

3. there is a number i such that 0 ≤ i ≤ n − k and for at least three letters
x ∈ {0, 1, 2, 3}, v = h(x)[i..i + k] satisfies |h(u)|v = |u|x for every u ∈
{0, 1, 2, 3}∗.

Then h(w) is k-abelian cube-free.
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Proof. The first condition prohibits short k-abelian cubes in h(w). If h(w)
contained a k-abelian cube of length less than 3k, then this cube would be
a factor of h(u) for some u ∈ {0, 1, 2, 3}4, where u is a factor of w and thus
square-free.

The second condition restricts the length of every k-abelian cube in h(w) to
be divisible by 3n. If h(w) contained a k-abelian cube pqr, where |p| = |q| =
|r| = m ≥ k, then

p[m− k + 1..m] · q[0..k − 1] = q[m− k + 1..m] · r[0..k − 1].

and the starting positions of these factors would differ by m. Now m is divisible
by n showing that the length of every k-abelian cube in h(w) is divisible by 3n.

By using the third condition we show that a k-abelian cube in h(w) would
lead to an abelian square in w. Let a′a1 . . . asb

′b1 . . . bsc
′c1 . . . csd

′ be a factor of
w, where aj , bj , cj , a

′, b′, c′ ∈ {0, 1, 2, 3}, so that pqr is a k-abelian cube in h(w)
with

p = p1h(a1 . . . as)p2, q = q1h(b1 . . . bs)q2, r = r1h(c1 . . . cs)r2,

where p1 is a suffix of h(a′), p2q1 = h(b′), q2r1 = h(c′), r2 is a prefix of h(d′),
|p1| = |q1| = |r1| and |p2| = |q2| = |r2|. Let i be the number and a, b, c the
three letters in condition 3. Let |p| = m, |p2| = j and vx = h(x)[i..i + k] for
x ∈ {a, b, c}. There are three cases.

If j ≤ i, then p2 is too short to contain vx and h(a′) contains vx if and only
if p1 contains vx for x ∈ {a, b, c}. Similarly for q2, h(b′) and q1. This gives by
condition 3

|a′a1 . . . as|x = |h(a′a1 . . . as)|vx
= |p|vx

= |q|vx
= |h(b′b1 . . . bs)|vx

= |b′b1 . . . bs|x

for x ∈ {a, b, c}. Thus a′a1 . . . as and b′b1 . . . bs are abelian equivalent, which
contradicts the abelian square-freeness of w.

If j ≥ i + k, then respectively

|a1 . . . asb
′|x = |h(a1 . . . asb

′)|vx
= |p|vx

= |q|vx
= |h(b1 . . . bsc

′)|vx
= |b1 . . . bsc

′|x

for x ∈ {a, b, c}, so a1 . . . asb
′ and b1 . . . bsc

′ are abelian equivalent, which is a
contradiction.

If i < j < i+k, then any of p1, p2, q1 or q2 cannot contain vx for x ∈ {a, b, c},
which gives

|a1 . . . as|x = |h(a1 . . . as)|vx
= |p|vx

= |q|vx
= |h(b1 . . . bs)|vx

= |b1 . . . bs|x

for x ∈ {a, b, c}. Further, vb′ is a factor of t = p[m− k + 1..m]q[0..k− 1] and vc′

is a factor of q[m−k+1..m]r[0..k−1], which is the same word as t. Now vb′ and
vc′ have the same starting positions in t, so vb′ = vc′ , and b′ = c′ by condition
3. Thus a1 . . . asb

′ and b1 . . . bsc
′ are abelian equivalent. This contradiction

completes the proof.

Now we are ready for our main theorem.
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Theorem 3. Let w ∈ {0, 1, 2, 3}ω be an abelian square-free word. Let h :
{0, 1, 2, 3}∗ → {0, 1}∗ be the morphism defined by

h(0) = 00101 0 011001 0 01011,

h(1) = 00101 0 011001 1 01011,

h(2) = 00101 1 011001 0 01011,

h(3) = 00101 1 011001 1 01011.

Then h(w) is 8-abelian cube-free.

Proof. Condition 1 of Theorem 2 is satisfied for k ≥ 4.
Condition 2 of Theorem 2 is satisfied for k ≥ 6.
Condition 3 of Theorem 2 is satisfied for k = 8 and i = 5. The three

letters are 0, 1 and 3, and the corresponding factors are 00110010, 00110011
and 10110011.

The claim now follows from Theorem 2.

The satisfiability of the three conditions in the previous proof has been
checked by computer as well as by paper and pencil. The computations are not
tedious.

We remark that for the case k = 2 the requirements of the last condition are
too strict because there exist only four different binary words of length 2. Thus
Theorem 2 cannot be applied for the case k = 2.

It is interesting to note that the infinite word avoiding 8-abelian cubes is
a morphic word, that is obtained as a morphic image (in fact by a uniform
morphism) of a word defined by iterating a morphism. Indeed, the solution
of Keränen uses a method of iterating a morphism. Even more strongly our
solution is given by an automatic sequence, see [AS].

As a conclusion, we know that 2-abelian square-freeness behaves like abelian
square-freeness and it seems that 2-abelian cube-freeness would behave like or-
dinary cube-freeness. Main theorem also shows that in the case k = 8 the
behaviour of k-abelian cube-freeness is similar to the behaviour of cube-freeness
of words. These results reinforce the impression of k-abelian equality to rep-
resent an equivalence in between equality and abelian equality. In some cases
the k-abelian equivalence resembles more the ordinary word equivalence and in
some cases the abelian one.
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