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Abstract

The three main topics of this work are independent systems and chains of
word equations, parametric solutions of word equations on three unknowns,
and unique decipherability in the monoid of regular languages.

The most important result about independent systems is a new method
giving an upper bound for their sizes in the case of three unknowns. The
bound depends on the length of the shortest equation. This result has
generalizations for decreasing chains and for more than three unknowns.
The method also leads to shorter proofs and generalizations of some old
results.

Hmelevksii’s theorem states that every word equation on three unknowns
has a parametric solution. We give a significantly simplified proof for this
theorem. As a new result we estimate the lengths of parametric solutions
and get a bound for the length of the minimal nontrivial solution and for
the complexity of deciding whether such a solution exists.

The unique decipherability problem asks whether given elements of some
monoid form a code, that is, whether they satisfy a nontrivial equation. We
give characterizations for when a collection of unary regular languages is a
code. We also prove that it is undecidable whether a collection of binary
regular languages is a code.
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Chapter 1

Introduction

In this work we are mostly interested in word equations, particularly in
questions related to independent systems and parametric solutions, but also
in unique decipherability. We start this introduction by giving some back-
ground information about these topics, and then we outline the structure
and results of this work.

Combinatorics on words is a part of discrete mathematics. It studies the
properties of strings of symbols and has applications in many areas from pure
mathematics to computer science. The history of combinatorics on words
can be said to begin with the works of Thue in the early 20th century [63, 64].
For a long time the research was scattered, but the book Combinatorics on
words [43] by Lothaire was a sign that the area had become more mature.
After that development has been fast, as can be seen in the later books of
Lothaire [44, 45]. Some other general references are [9], [4] and [3].

Algebraically words form a free monoid, which is one of the most fun-
damental algebraic structures. Thus the connections to algebra are natural,
but combinatorics on words is also related to other areas of mathematics,
like number theory and dynamical systems.

From the point of view of computer science, combinatorics on words is
strongly related to automata and formal languages. Algorithmic questions
are often studied. There are also connections to some more applied areas,
like bioinformatics and pattern recognition.

Theory of word equations is an important part of combinatorics on
words. It plays an essential role in many areas of mathematics, such as in
representation results of algebra, theory of algorithms and pattern match-
ing. One of the historically important papers on word equations is the
article by Lyndon and Schützenberger [46]. During the last decades the
area has provided several challenging problems as well as fundamental, or
even breakthrough, results in discrete mathematics.

One remarkable result of this topic is the decidability of the satisfiability
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problem for word equations. This was proved by Makanin [47] and is in
contrast to the same problem on Diophantine equations, which is undecid-
able [48]. For a presentation of Makanin’ result, see [16]. This result was
improved to a PSPACE algorithm by Plandowski [52]. The satisfiability
problem is known to be NP-hard and has been conjectured to be in NP [53].

In the case of word equations with only three unknowns important re-
sults have also been achieved. In one direction Hmelevskii [26] proved that
any such constant-free equation is finitely parameterizable, that is the gen-
eral solution can be expressed as a finite formula on word and numerical
parameters. On other direction Spehner [61, 62] classified all sets of re-
lations a given solution, that is a triple of words, can satisfy (see also the
paper by Budkina and Markov [7]). A remarkable thing is that both of these
results have only very complicated proofs. This is a splendid example of a
challenging nature of word problems.

It should be noted that Makanin’s result concerns word equations with
constants, while Hmelevskii’s result is about constant-free equations. When
talking about word equations in this work, we mean constant-free equations.

Another remarkable property of word equations is the so-called Ehren-
feucht compactness property. It guarantees that any system of word equa-
tions is equivalent to some of its finite subsystems. The proofs (see [2]
and [20]) are based on a transformation of word equations into Diophantine
equations and an application of Hilbert’s basis theorem. Although we have
this finiteness property, we do not know any upper bound, if it exists, for
the size of an equivalent subsystem in terms of the number of unknowns.
This holds even in the case of three unknowns.

One of the basic results in the theory of word equations is that a non-
trivial equation causes a defect effect. In other words, if n words satisfy a
nontrivial relation, then they can be represented as products of n−1 words.
Not much is known about the additional restrictions caused by several in-
dependent relations [22].

In fact, even the following simple question, formulated already in [12], is
still unanswered: how large can an independent system of word equations on
three unknowns be? The largest known examples consist of three equations.
The only known upper bound comes from the Ehrenfeucht compactness
property: an independent system cannot be infinite. This question can be
obviously asked also in the case of n > 3 unknowns. Some results concerning
independent systems on three unknowns can be found in [24], [14] and [15],
but the open problem seems to be very difficult to approach with current
techniques.

There are many variations of the above question. As a related problem
we define the notion of decreasing chains of word equations. This asks how
long chains of word equations exist such that the set of solutions always
properly diminishes when a new element of the chain is taken into the sys-
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tem. Or more intuitively, how many proper constraints we can define such
that each constraint reduces the set of words satisfying these constraints. It
is essentially the above compactness property which guarantees that these
chains are finite.

Equations can be studied not only for words, that is in a free monoid,
but also in other semigroups, see e.g. [23].

Instead of taking a word equation and looking for its solutions, we could
also take some words and look for the equations they satisfy. If the words
do not satisfy any nontrivial relation, then it is said that they form a code,
or have the unique decipherability property. Codes have been studied a lot,
see e.g. [5], and they are fundamentally important in message transmission.

The problem of determining whether a set is a code was probably first
encountered when asking whether or not a finite encoding i 7→ wi can be
uniquely decoded, that is whether a finite set of words {wi | i ∈ I} is a free
generating set of a submonoid of a free monoid. An affirmative answer to
this problem is given by the classical Sardinas-Patterson algorithm [59]. This
algorithm extends straightforwardly to regular languages, see, for example,
Section I.3 in [5].

There are several options to try to extend the above problem. One such
direction is to consider instead of the freeness of a finitely generated subsemi-
group of Σ∗, the isomorphism of two such semigroups. This reveals some
interesting phenomena. First of all the problem remains decidable, see [8],
but the proof relies on something surprising, namely systems of equations
over free semigroups and their compactness properties. Even more interest-
ingly this approach does not extend to subsemigroups generated by regular
languages – in fact, the decidability of their isomorphism is an open problem.
Another interesting feature here is that when moving from subsemigroups of
a free semigroup to more general semigroups the isomorphism problem be-
comes undecidable. For example, for finitely generated multiplicative semi-
groups of 3× 3 matrices over natural numbers the isomorphism, or even the
freeness, problem is undecidable, see [37] or [21] as a survey.

Like the notion of an equation, also the notion of a code can be extended
to other monoids. The unique decipherability problem in a monoid M
asks whether a given finite subset M of M is a free generating set of the
submonoid of M it generates.

We are interested in the monoid of languages. The product of two lan-
guages A and B is defined as the language containing all words uv, where
u ∈ A and v ∈ B. Then the set of all languages is a monoid. Some problems
that are easy for words are very hard in this monoid. For example, if xy = yx
for two words x, y, then x and y are powers of a common word, but no sim-
ilar result holds for languages. In fact, the maximal language commuting
with a given finite language is not necessarily even recursively enumerable
[41]. As another example, it is undecidable whether ABiC = DEiF for all
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i, where A,B,C,D,E, F are given finite sets [32].

Recently an attempt to study codes in the monoid of languages was
made in [10]. It was shown that the unique decipherability in the monoid of
unary languages is decidable in the case of finite languages, as well as in the
case of regular, that is ultimately periodic languages. Also a simple case of
non-unary languages was settled affirmatively in [10]: if there is a letter that
appears exactly once in every word of every language, then the problem is
decidable. It is also known that the set of finite prefix sets is a free monoid,
i.e. generated by a code [50].

Let us now give a brief overview of this work.

We start in Chapter 2 by giving some basic definitions, notation and
theorems that will be used later.

In Chapter 3, based on [35], we analyze maximal independent systems
of equations and maximal decreasing chains of equations, as well as search
for their relations. We also survey known results and open problems. The
most fundamental problem asks whether the maximal size of an independent
system of word equations on n unknowns is bounded by some function of n.
Amazingly, the same problem is open for three unknown equations, although
we do not know independent systems of more than three equations in this
case. The question about maximal sizes of decreasing chains of equations
is equally open. We give new lower bounds in the cases of three and four
unknowns: a chain of seven equations on three unknowns and a chain of
twelve equations on four unknowns.

In Chapter 4, based on [56], we use polynomials to study some questions
related to systems of word equations. Algebraic techniques have been used
before, most notably in the proof of Ehrenfeucht’s conjecture, which is based
on Hilbert’s basis theorem. However, the way in which we use polynomials
is quite different and allows us to apply linear algebra to the problems. One
of the main contributions of this chapter is the development of new meth-
ods for attacking problems on word equations. Other contributions include
simplified proofs and generalizations for old results and studying maximal
sizes of independent systems of equations. In particular, we get the first
nontrivial lower bound for the size of independent systems of word equa-
tions on three unknowns. This bound depends on the length of the shortest
equation in the system. Thus the connection between word equations and
linear algebra is not only theoretically interesting, but is also shown to be
very useful at establishing simple-looking results that have been previously
unknown, or that have had only very complicated proofs. In addition to
the results of this section, we believe that the techniques may be useful in
further analysis of word equations.

In Chapter 5, based on [34] and [55], we analyze the proof of Hmelevskii’s
theorem. The result itself is, of course, very well known, see e.g. [43]. How-
ever, a compact and readable presentation of it seems to be lacking. We
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hope to fill this gap. In other words, we search for a self-contained proof
using achievements and tools of combinatorics on words obtained over the
last decades. In addition, we conclude an upper bound for the size of the
formula giving the general solution of a constant-free equation on three un-
knowns. Our bound is exponential in terms of the length of the equation.
Based on the bound for the parametric solution, we prove that the length
of the shortest nontrivial solution is also exponential (if such a solution ex-
ists). This connects our work to the satisfiability problem mentioned above,
because Plandowski and Rytter proved [53] that there is a nondeterministic
algorithm solving the problem in time polynomial in n log N , where n is the
length of the equation and N is the length of the shortest solution. From
this and our result it follows that the problem of deciding if a constant-free
equation on three unknowns has a nontrivial solution is in NP.

In Chapter 6, based on [57] and [36], we study unique decipherability in
the monoid of languages. The monoid of unary languages is isomorphic to
the additive monoid of sets of natural numbers, so in the unary case we will
actually formulate everything in terms of sets of numbers. We will extend
the result of [10] by giving a complete characterization of codes in the monoid
of unary regular languages. We will also study the power equality problem,
that is the problem of determining whether some powers of two sets are
equal. As far as we know, the nonunary case is very much untouched. We
show that, given a finite collection of regular languages, it is undecidable
whether it is a free generating set in the monoid of languages. Our result is
based on another undecidability result in [11] which states that the unique
decipherability problem is undecidable in the trace monoid {a, b}∗ ×{c, d}∗.

Finally, in Chapter 7 we give a summary of the results in this work.
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Chapter 2

Preliminaries

We start this chapter with definitions and theorems about words, about
equations in semigroups and about word equations. Then we determine
the solutions of many simple equations and give some definitions related to
parametric words. Finally we talk about unique decipherability. Proofs and
more information on combinatorics on words can be found in [43] and [9].

2.1 Words

The set of nonnegative integers is denoted by N0 and the set of positive
integers by N1.

An alphabet Σ is a set of symbols. The elements of Σ are also called
letters. A word w over Σ is a finite sequence of these symbols: w = a1 . . . an,
where a1, . . . , an ∈ Σ and n ∈ N0. If n = 0, we get the empty word,
denoted by ε. The product (or catenation or concatenation) of two words
u = a1 . . . am and v = b1 . . . bn is uv = a1 . . . amb1 . . . bn.

If Σ is an alphabet, then Σ∗ is the set of all words over Σ, and Σ+ is
the set of all nonempty words. Now Σ∗ is a free monoid and Σ+ is a free
semigroup. The empty word ε is the neutral element in Σ∗.

The size of the alphabet is usually not important, as long as there are
at least two letters. However, when talking about the ranks of solutions
of equations, we have to assume that there are at least as many letters as
unknowns.

The length of a word w = a1 . . . an ∈ Σ∗ is |w| = n. The number of
occurrences of a letter a ∈ Σ in w is denoted by |w|a.

A word w ∈ Σ∗ is a factor of a word t ∈ Σ∗ if there are u, v ∈ Σ∗ such
that t = uwv. If u = ε, then w is a prefix of t. This is denoted by w ≤ t. If
also w 6= t, then w is a proper prefix and the notation w < t is used.

A word w ∈ Σ+ is primitive if it is not of the form uk for any u ∈ Σ+

and k > 1. Every word w ∈ Σ+ can be represented uniquely as un with u
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primitive; then u is the primitive root of w and the notation u = ρ(w) is
used.

The reverse of a word w = a1 . . . an is wR = an . . . a1.

2.2 Equations in Semigroups

We are mostly interested in word equations, but equations can be defined in
any semigroup. In this section we give definitions related to equations in an
arbitrary semigroup S. These will be used in Section 3.1, and also in many
other sections in the case S = Σ∗.

Let S be a semigroup and Ξ be a finite nonempty alphabet of unknowns.
A (coefficient-free) equation u = v consists of two words u, v ∈ Ξ+. A
morphism h : Ξ+ → S is a solution of this equation if h(u) = h(v). The set
of all solutions is denoted by Sol(u = v).

If S is a monoid, we can use Ξ∗ instead of Ξ+, so that equations like
u = ε are allowed. An equation u = ε can also be written u = 1 if 1 is the
neutral element of S.

A set of equations A is a system of equations. A morphism is a solution
of this system if it a solution of every equation in A. The set of all solutions
of A is denoted by Sol(A). We have

Sol(A) =
⋂

E∈A

Sol(E).

As a trivial boundary case, Sol(∅) is the set of all morphisms Ξ+ → S.
Two equations (or systems of equations) are equivalent if they have the

same solutions.
When writing systems of equations, we can omit the braces, so that

a system {E1, . . . , Em} can be written as E1, . . . , Em, and the set of its
solutions as Sol(E1, . . . , Em).

If Ξ = {x1, . . . , xn} and w1, . . . , wn ∈ Σ∗, then we can informally talk of
the solution

x1 = w1, . . . , xn = wn.

This means the morphism h determined by

h(x1) = w1, . . . , h(xn) = wn.

An equation is trivial if every morphism S → Ξ+ is a solution; otherwise
it is nontrivial.

An equation u = v is balanced if |u|x = |v|x for every unknown x;
otherwise it is unbalanced.

Equations of the form u = u are always trivial. In some semigroups there
are also other trivial equations. For example, in a commutative semigroup
every balanced equation is trivial.
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A system of equations is independent if it is not equivalent to any of
its proper subsystems. Another formulation, which is useful when showing
that a specific system is independent, is that a system A is independent if
for every E ∈ A there is a morphism that is not a solution of E, but is a
solution of all the other equations in A.

Solution sets of systems of equations form a partially ordered set where
the order is given by set inclusion. It is natural to consider maximal sizes of
chains in this partially ordered set. So if A0, . . . , Am are systems of equations
and

Sol(A0) ) Sol(A1) ) Sol(A2) ) · · · ) Sol(Am),

then how large can m be? If m can be unboundedly large, can there be
infinite decreasing or increasing chains?

It will be shown in Theorem 3.1.2 that it is sufficient to consider the case
where the systems are of the form

A0 = ∅, A1 = {E1}, A2 = {E1, E2}, . . . , Am = {E1, . . . , Em}.

This justifies the following definitions.

We define decreasing chains of equations. A finite sequence of equations
E1, . . . , Em is a decreasing chain if

Sol(∅) ) Sol(E1) ) Sol(E1, E2) ) · · · ) Sol(E1, . . . , Em). (2.1)

An infinite sequence of equations E1, E2, . . . is a decreasing chain if

Sol(∅) ) Sol(E1) ) Sol(E1, E2) ) . . . .

Similarly we define increasing chains of equations. A finite sequence of
equations E1, . . . , Em is an increasing chain if

Sol(E1, . . . , Em) ( Sol(E2, . . . , Em) ( · · · ( Sol(Em) ( Sol(∅).

An infinite sequence of equations E1, E2, . . . is an increasing chain if

Sol(E1, E2, . . . ) ( Sol(E2, E3, . . . ) ( Sol(E3, E4, . . . ) ( . . . .

Now E1, . . . , Em is an increasing chain if and only if Em, . . . , E1 is a
decreasing chain. However, for infinite chains these concepts are essentially
different. Note that a chain can be both decreasing and increasing, for
example, if the equations form an independent system.

In the definitions the inclusions between the solution sets are trivial, so
we could as well write

Sol(∅) 6= Sol(E1) 6= Sol(E1, E2) 6= · · · 6= Sol(E1, . . . , Em)
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in place of (2.1), and so on. This also means that E1, . . . , Em is a decreasing
chain if and only if for every i ∈ {1, . . . ,m} there is a morphism that is not
a solution of Ei, but is a solution of the system E1, . . . , Ei−1.

A semigroup has the compactness property if every system of equations
has an equivalent finite subsystem. Many results on the compactness prop-
erty are collected in [23]. In terms of chains, the compactness property
turns out to be equivalent to the property that every decreasing chain is
finite. This is proved in Theorem 3.1.3 and gives further justification for the
importance of decreasing chains.

2.3 Word Equations

In this section we state some well known theorems related to word equations,
that is equations in the free monoid Σ∗.

Let Ξ be a finite nonempty alphabet of unknowns. A (coefficient-free)
word equation u = v consists of two words u, v ∈ Ξ+. A morphism h : Ξ∗ →
Σ∗ is a solution of this equation if h(u) = h(v).

This is of course just the definition of equations in the previous section
written for free monoids. Similarly we can denote the set of solutions by Sol
and extend all the definitions for systems of equations.

A solution h is periodic if there exists a t ∈ Σ∗ such that every h(x),
where x ∈ Ξ, is a power of t. Otherwise h is nonperiodic.

Now we state some basic auxiliary results that are needed later, for more
see [9].

Theorem 2.3.1 (Commutation). A nontrivial equation on two unknowns
has only periodic solutions.

Theorem 2.3.2 (Periodic solutions). Let Ξ = {x1, . . . , xn}. The periodic
solutions of an equation u = v are

x1 = ti1 , . . . , xn = tin ,

where t ∈ Σ∗ and i1, . . . , in are numbers satisfying the linear relation

|u|x1i1 + · · · + |u|xnin = |v|x1i1 + · · · + |v|xnin.

Theorem 2.3.3 (Conjugation). The solutions of the equation xz = zy are

x = pq, y = qp, z = p(qp)i or x = y = ε, z = p,

where p, q ∈ Σ∗ and i ≥ 0.

Theorem 2.3.4 (Fine and Wilf). Let u, v ∈ Σ+, u′ < u, v′ < v and

|umu′| = |vnv′| ≥ |u| + |v| − gcd(|u|, |v|).

Now umu′ = vnv′ if and only if uv = vu.

10



The (combinatorial) rank of a morphism h is the smallest number r for
which there is a set A of r words such that h(x) ∈ A∗ for every unknown x.

A morphism is periodic if and only if its rank is at most one.
It is well known that any nontrivial equation on n variables forces a defect

effect; that is, the values of the variables in any solution can be expressed
as products of n − 1 words (see [22] for a survey on the defect effect).

Theorem 2.3.5 (Defect theorem). Every solution of a nontrivial equation
on n variables has rank at most n − 1.

The graph of a system of word equations is the graph where Ξ is the set
of vertices and there is an edge between x and y if one of the equations in
the system is of the form x · · · = y · · · .

Theorem 2.3.6 (Graph lemma). Consider a system of equations whose
graph has r connected components. If h is a solution of this system and
h(x) 6= ε for all x ∈ Ξ, then the rank of h is at most r.

The above theorem has the following corollary, which is particularly
useful in Chapter 5.

Corollary 2.3.7. Let A,B,C,D ∈ {x, y, z}∗. If h is a solution of the pair of
equations xA = yB, xC = zD and if h(x), h(y), h(z) 6= ε, then h is periodic.

The following theorem, proved in [24], is sometimes useful.

Theorem 2.3.8. If an independent pair of equations on three unknowns has
a nonperiodic solution, then the equations must be balanced.

We will generalize and reproof this result in Section 4.5.
If we need to replace a system of equations with a single equation, the

following theorem can be used.

Theorem 2.3.9. Let E1, E2 be a pair of equations. There is an equation
that has the same nonperiodic solutions as the pair. If at least one of E1, E2

is balanced, then there is an equation that is equivalent to the pair.

Proof. The first claim was proved in [26]. If Ei is the equation ui = vi and E1

is balanced, then the pair E1, E2 is equivalent to the equation u1u2 = v1v2,
so the second claim holds.

Two unbalanced equations can’t necessarily be combined. For example,
the pair x = y, x = z is not equivalent to any single equation.

It was conjectured by Ehrenfeucht in a language theoretic setting that
the compactness property holds for free monoids. This conjecture was re-
formulated in terms of equations in [12], and it was proved independently
by Albert and Lawrence [2] and by Guba [20].
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Theorem 2.3.10 (Ehrenfeucht’s compactness property). Every infinite sys-
tem of word equations has an equivalent finite subsystem.

The proofs are based on Hilbert’s basis theorem.

2.4 Examples of Word Equations

In this section we solve some simple word equations. These work as exam-
ples, but they are also used in Chapter 5.

The following lemma is needed in Lemma 2.4.8.

Lemma 2.4.1. If ww = uwv, where u 6= ε and v 6= ε, then w is not
primitive.

We continue by solving a few examples of word equations that are needed
later.

Lemma 2.4.2. The nonperiodic solutions of the equation xyz = zyx are

x = (pq)ip, y = q(pq)j , z = (pq)kp,

where p, q ∈ Σ∗, i, j, k ≥ 0, pq 6= qp and pq can be assumed to be primitive.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If
h is a nonperiodic solution, then h(xyzy) = h(zyxy), so h(xy) = tm and
h(zy) = tn, where t is primitive and m,n > 0. Now h(y) = q(pq)j , where
pq = t and 0 ≤ j < m,n, so h(x) = (pq)ip and h(z) = (pq)kp, where
i = m − j − 1 and k = n − j − 1. If p and q would commute, the solution
would be periodic.

Lemma 2.4.3. The nonperiodic solutions of the equation xyz = zxy are

x = (pq)ip, y = q(pq)j , z = (pq)k,

where p, q ∈ Σ∗, i, j, k ≥ 0 and pq 6= qp.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If h is
a nonperiodic solution, then h(xy) = tm and h(z) = tk, where m > 0, k ≥ 0.
Now h(y) = q(pq)j , where pq = t and 0 ≤ j < m, so h(x) = (pq)ip and
h(z) = (pq)k, where i = m − j − 1. If p and q would commute, the solution
would be periodic.

Lemma 2.4.4. Let a ≥ 2. The nonperiodic solutions of the equation xzx =
ya are

x = (pq)ip, y = (pq)i+1p, z = qp((pq)i+1p)a−2pq,

where p, q ∈ Σ∗, i ≥ 0 and pq 6= qp.
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Proof. The claimed solutions satisfy the equation and are nonperiodic. Let
h be a nonperiodic solution. If it would be |h(x)| ≥ |h(y)|, then h(xz) and
h(y) would be powers of a common word by Theorem 2.3.4, and h would be
periodic. Thus |h(x)| < |h(y)|. Now h(y) = uh(x) = h(x)v, where u, v 6= ε,
and h(z) = vh(y)a−2u. By Theorem 2.3.3, u = pq, v = qp, h(x) = (pq)ip,
h(y) = (pq)i+1p and h(z) = qp((pq)i+1p)a−2pq. If p and q would commute,
the solution would be periodic.

Lemma 2.4.5. Let a ≥ 2. The nonperiodic solutions of the equation xyaz =
zyax are

x = (pqa)ip, y = q, z = (pqa)jp or




x = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)i,

y = (pq)k+1p,

z = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)j,

where p, q ∈ Σ∗, i, j, k ≥ 0 and pq 6= qp.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If h
is a nonperiodic solution, then, by Lemma 2.4.2,

h(x) = u(vu)i, h(ya) = v(uv)b, h(z) = u(vu)j ,

where uv is primitive. If b = 0, this gives a solution of the first form. If
b > 1, then, by Theorem 2.3.4, h(y) and vu commute. Then u = ε or
v = ε and h(x), h(y), h(z) ∈ (uv)∗, which is a contradiction. If b = 1, then,
by Lemma 2.4.4, v = (pq)kp, h(y) = (pq)k+1p and u = qp((pq)k+1p)a−2pq.
This gives a solution of the second form. If p and q would commute, the
solution would be periodic.

Lemma 2.4.6. Those nonperiodic solutions of the equation xyxz = zx2y
that satisfy |x| ≥ |z| are

x = (pq)ip, y = qp((pq)i+1p)jpq, z = pq,

where p, q ∈ Σ∗, i ≥ 1, j ≥ 0 and pq 6= qp.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If h
is a nonperiodic solution, then, by Lemma 2.4.2,

h(xy) = (uv)bu, h(x) = v(uv)c, h(z) = (uv)du.

Because h(z) ≤ h(x) ≤ h(xy) and uv 6= vu, it must be h(z) = u ≤ h(x) =
v ≤ uv. Now h(z) = pq and h(x) = (pq)ip, so y = qp((pq)i+1p)jpq. If p and
q would commute, the solution would be periodic.
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Lemma 2.4.7. Let a, b ≥ 1 and U, V ∈ Ξ∗. If h is a solution of the equation
xayU = ybxV , then h(x) and h(y) commute.

Proof. Assume that h(x) ≤ h(y). Then h(y) = h(x)ct, where h(x) � t.
Because h(x)a+c · · · = h(x)ct · · · , it must be t ≤ h(x). Now h(x)a+ct · · · =
h(y)bh(x) · · · and |h(x)a+ct|, |h(y)bh(x)| ≥ |h(x)h(y)|. The claim follows by
Theorem 2.3.4.

Lemma 2.4.8. The nonperiodic solutions of the equation xyxzyz = zxzyxy
are

x = p, y = q, z = ε or x = p, y = q, z = pq,

where p, q ∈ Σ∗ and pq 6= qp.

Proof. The claimed solutions satisfy the equation and are nonperiodic. If h
is a nonperiodic solution, then, by Lemma 2.4.2,

h(xy) = (uv)iu, h(xzy) = v(uv)j , h(z) = (uv)ku,

where uv is primitive. If |h(x)| ≥ |uv|, then uv and vu are both prefixes of
h(x), uv = vu, and the solution is periodic. Thus |h(x)| < |uv|. Symmetri-
cally |h(y)| < |uv|, so i = 0 or i = 1. If k > 0 and h(x) 6= v, then uv is a
factor of uvuv in a nontrivial way, which contradicts the primitivity of uv
by Lemma 2.4.1. If h(x) = v, then h(y) = v(uv)l for some l, u and v satisfy
a nontrivial relation and the solution is periodic. Thus k = 0 and h(z) = u.
If i = 0, then h(xy) = h(z). If i = 1, then either h(z) = ε or j = 1 or j = 2
or v = ε. If j = 1, then |v| = 2|u|, u is a prefix and a suffix of v, and u and
v commute. If j = 2, then |u| = 2|v|, v is a prefix and a suffix of u, and
u and v commute. If v = ε, then |h(x)|, |h(y)| < |uv| is not possible. This
proves that the claimed solutions are all nonperiodic solutions. If p and q
would commute, the solution would be periodic.

We will use the equation of Lemma 2.4.8 several times. Essentially the
same equation was also used in [42] to prove a result about one unknown
equations with constants.

2.5 Parametric Words

In this section we define parametric words, parameterizability and paramet-
ric solutions. These definitions are used in Chapter 5.

We fix the alphabet of word parameters ∆ and the set of numerical
parameters Λ. Now parametric words are defined inductively as follows:

(i) if a ∈ ∆ ∪ {ε}, then (a) is a parametric word,

(ii) if α and β are parametric words, then so is (αβ),
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(iii) if α is a parametric word and i ∈ Λ, then (αi) is a parametric word.

The set of parametric words is denoted by P(∆,Λ). The sets of parameters
are always denoted by ∆ and Λ.

When there is no danger of confusion, unnecessary parenthesis can be
omitted and notations like αiαj = αi+j and (αi)j = αij can be used. Then
parametric words form a monoid if the product of α and β is defined to be
αβ.

If f is a function Λ → N0 = {0, 1, 2, . . . }, we can abuse the notation and
use the same symbol for the function that maps parametric words by giving
values for the numerical parameters with f : if a ∈ ∆∪{ε}, then f((a)) = a;
if α, β ∈ P(∆,Λ), then f((αβ)) = f(α)f(β); if α ∈ P(∆,Λ) and i ∈ Λ, then
f((αi)) = f(α)f(i). A parametric word is thus mapped by f to a word of
∆∗. This can be further mapped by a morphism h : ∆∗ → Σ∗ to a word of
Σ∗. The mapping h ◦ f is a valuation of a parametric word into Σ∗, and f
is its valuation to the set ∆∗.

We define the length of a parametric word: the length of ε is zero; if
a ∈ ∆, then the length of a is one; if α, β ∈ P(∆,Λ), then the length of αβ
is the sum of the lengths of α and β; if α ∈ P(∆,Λ) r {ε} and i ∈ Λ, then
the length of αi is the length of α plus one. The length of α is denoted by
|α|.

Next we define the height of a parametric word: if a ∈ ∆∪{ε}, then the
height of a is zero; if α, β ∈ P(∆,Λ), then the height of αβ is the maximum
of the heights of α and β; if α ∈ P(∆,Λ) r {ε} and i ∈ Λ, then the height
of αi is the height of α plus one. Parametric words of height zero can be
considered to be words of ∆∗.

A linear Diophantine relation R is a disjunction of systems of linear
Diophantine equations with lower bounds for the unknowns. For example,

((x + y − z = 0) ∧ (x ≥ 2)) ∨ ((x + y = 3) ∧ (x + z = 4))

is a linear Diophantine relation over the unknowns x, y and z. We are only
interested in the nonnegative values of the unknowns. If Λ = {i1, . . . , ik},
f is a function Λ → N0, and f(i1), . . . , f(ik) satisfy R, then the notation
f ∈ R can be used.

Let S be a set of morphisms Ξ∗ → Σ∗, Λ = {i1, . . . , ik}, hj a morphism
from the monoid Ξ∗ to parametric words and Rj a linear Diophantine re-
lation, when j = 1, . . . ,m. The set {(hj , Rj) | 1 ≤ j ≤ m} is a parametric
representation of S if

S = {h ◦ f ◦ hj | 1 ≤ j ≤ m, f ∈ Rj} ,

where h ◦ f runs over all valuations to Σ∗. The linear Diophantine relations
are not strictly necessary, but they make some proofs easier. A set can be
parameterized if it has a parametric representation.
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It follows immediately that if two sets can be parameterized, then also
their union can be parameterized.

The length of the parametric representation is the sum of the lengths of
all hj(x), where j = 1, . . . ,m and x ∈ Ξ. This definition does not take into
account the linear Diophantine relations. For example, if a is a number,
then the length of pa is a, but if i is a numerical parameter appearing
nowhere in the representation and if the equality i = a is added to the
linear Diophantine relation, then pa can be replaced with pi, whose length
is only two.

Let S, S1, . . . , Sn be sets of morphisms Ξ∗ → Σ∗. The set S can be param-
eterized in terms of the sets S1, . . . , Sn if there exists morphisms h1, . . . , hn

from Ξ∗ to P(Ξ,Λ) such that

S = {g ◦ f ◦ hj | 1 ≤ j ≤ n, g ∈ Sj} ,

where f runs over functions Λ → N0.

Again it is a direct consequence of the definitions that the parameteriz-
ability is preserved in compositions. Namely, if S can be parameterized in
terms of the sets S1, . . . , Sn and every Si can be parameterized in terms of
the sets Si1, . . . , Sini

, then S can be parameterized in terms of the sets Sij.

We conclude these definitions by saying that solutions of an equation
can be parameterized if the set of its all solutions can be parameterized. A
parametric representation of this set is a parametric solution of the equation.

These definitions can be generalized in an obvious way for systems of
equations. Theorem 2.3.3 and Lemmas 2.4.2 – 2.4.8 give parametric solu-
tions for some equations. For example, the conjugacy equation xz = zy
has a parametric solution {(h1, R), (h2, R)}, where ∆ = {p, q}, Λ = {i},
h1(x) = pq, h1(y) = qp, h1(z) = p(qp)i, h2(x) = h2(y) = ε, h2(z) = p and R
is the trivial relation satisfied by all functions f : Λ → N0.

Hmelevskii proved [26] that every equation on three unknowns has a
parametric solution. Giving a new proof for this theorem is the topic of
Chapter 5.

2.6 Unique Decipherability

This section gives preliminaries for Chapter 6.

A set of words {w1, . . . , wn} is a code, or has the unique decipherability
property, if

x1 = w1, . . . , xn = wn

is not a solution of any nontrivial word equation.

A good reference on the theory of codes is [5]. There is a well-known
algorithm for determining whether a given set of words is a code [59].
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Codes can also be defined in other semigroups than Σ∗: a subset of a
semigroup is a code if the elements of the subset do not satisfy a nontrivial
equation.

We are interested in the case where the semigroup is the set of all regular
languages over Σ. The product of two languages is defined in a usual way:
AB = {uv | u ∈ A, v ∈ B} .

There are two essentially different cases depending on whether Σ has
just one letter or at least two.

If Σ = {a}, then the semigroup of languages is isomorphic to the additive
semigroup of sets of nonnegative integers, where the product of two sets is

AB = {x + y | x ∈ A, y ∈ B} .

The isomorphism is given by {ak1 , ak2 , . . . } 7→ {k1, k2, . . . }. Thus we can
consider sets of numbers instead of unary languages.
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Chapter 3

Chains and Systems of

Equations

In this chapter we study equations, first in an arbitrary semigroup and then
in a free monoid. We survey known results and give examples. We prove
some elementary theorems that, as far as we know, have not been explicitly
stated before. We also give some new lower bounds for the sizes of decreasing
chains of equations.

Section 3.1 is devoted to equations in semigroups.

In Section 3.2 we make basic observations about word equations.

In Section 3.3 we make a remark about the trivial cases of one and two
unknowns and give lower bounds for the maximal sizes of systems and chains
in the cases of three and four unknowns.

In Section 3.4 we consider lower bounds in the general case of n un-
knowns.

In Section 3.5 we mention some related question.

This chapter is based on the article [35].

3.1 Systems and Chains in Semigroups

In this section we consider independent systems and chains of equations in
semigroups. The definitions were given in Section 2.2.

More precisely, we will consider the maximal sizes of independent sys-
tems of equations and chains of equations. If the number of unknowns is n,
then the maximal size of an independent system is denoted by IS(n). We
use two special symbols UB and ∞ for the infinite cases: if there are infi-
nite independent systems, then IS(n) = ∞, and if there are only finite but
unboundedly large independent systems, then IS(n) = UB. We extend the
order relation of numbers to these symbols: k < UB < ∞ for every integer
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k. Similarly the maximal size of a decreasing chain is denoted by DC(n),
and the maximal size of an increasing chain by IC(n).

Independent systems of equations are a well-known topic (see, e.g., [23]).
Chains of equations have been studied less, so we prove here some elementary
results about them. The following theorem states the most basic relations
between IS, DC and IC.

Theorem 3.1.1. For every n, IS(n) ≤ DC(n), IC(n). If DC(n) < UB or
IC(n) < UB, then DC(n) = IC(n).

Proof. Every independent system of equations is also a decreasing and in-
creasing chain of equations, regardless of the order of the equations. This
means that IS(n) ≤ DC(n), IC(n).

A finite sequence of equations is a decreasing chain if and only if the
reverse of this sequence is an increasing chain. Thus DC(n) = IC(n) if
DC(n) < UB or IC(n) < UB.

Now we prove two theorems mentioned in Section 2.2.

Theorem 3.1.2. If there are systems of equations A0, . . . , Am such that

Sol(A0) ) · · · ) Sol(Am), (3.1)

then DC(n) ≥ m. If there are systems of equations A0, A1, . . . such that

Sol(A0) ) Sol(A1) ) . . . , (3.2)

then DC(n) = ∞. If there are systems of equations A1, A2, . . . such that

Sol(A1) ( Sol(A2) ( . . . , (3.3)

then IC(n) = ∞.

Proof. First, assume that (3.1) holds. If we replace every Ai with A0 ∪ · · · ∪
Ai, then (3.1) still holds, so we can assume that A0 ( · · · ( Am. For every
i ∈ {1, . . . ,m}, there is a solution hi ∈ Sol(Ai−1) r Sol(Ai) and an equation
Ei ∈ Ai r Ai−1 such that hi /∈ Sol(Ei). Now E1, . . . , Em is a decreasing
chain.

Second, assume that (3.2) holds. If we replace every Ai with A0∪· · ·∪Ai,
then (3.2) still holds, so we can assume that A0 ( A1 ( . . . . For every
i ∈ {1, 2, . . . }, there is a solution hi ∈ Sol(Ai−1) r Sol(Ai) and an equation
Ei ∈ Ai r Ai−1 such that hi /∈ Sol(Ei). Now E1, E2, . . . is an infinite
decreasing chain.

Third, assume that (3.3) holds. If we replace every Ai with Ai∪Ai+1∪. . . ,
then (3.3) still holds, so we can assume that A1 ) A2 ) . . . . For every
i ∈ {1, 2, . . . }, there is a solution hi ∈ Sol(Ai+1) r Sol(Ai) and an equation
Ei ∈ Ai r Ai+1 such that hi /∈ Sol(Ei). Now E1, E2, . . . is an infinite
increasing chain.
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Theorem 3.1.3. A semigroup has the compactness property if and only if
DC(n) ≤ UB for every n.

Proof. Assume first that the compactness property holds. Let E1, E2, . . .
be an infinite decreasing chain of equations. As a system of equations, it
is equivalent to some finite subsystem Ei1 , . . . , Eik , where i1 < · · · < ik.
But now the system E1, . . . , Eik is equivalent to E1, . . . , Eik+1. This is a
contradiction.

Assume then that DC(n) ≤ UB for every n. Let E1, E2, . . . be an in-
finite system of equations. If there is an index N such that E1, . . . , Ei is
equivalent to E1, . . . , Ei+1 for all i ≥ N , then the whole system is equiva-
lent to E1, . . . , EN . If there is no such index, then let i1 < i2 < . . . be all
indexes such that E1, . . . Eik is not equivalent to E1, . . . , Eik+1. But then
Ei1, Ei2 , . . . is an infinite decreasing chain, which is a contradiction.

This theorem is one reason why decreasing chains seem to be more in-
teresting than increasing ones. Another reason is that we do not know an
example where IC(n) = UB. If there would not be such examples, then
IC(n) would be completely determined by DC(n).

Now we examine what kind of combinations of values IS, DC and IC can
have. The first two examples give the extreme cases: all three values can be
finite, and all three values can be infinite.

Example 3.1.4. In any finite semigroup, IS(n), DC(n) and IC(n) are finite
for all n.

Example 3.1.5. In the monoid of functions Z → Z, IS(2) = DC(2) =
IC(2) = ∞. For j > 0, let fj(a) = 1 if a = 2j and fj(a) = 0 otherwise. Let
g(a) = a + 2 for all a. Now fj ◦ gi ◦ fj = fj ◦ fj if and only if i 6= j, so the
infinite system of equations xyix = xx (i = 1, 2, . . . ) is independent.

The next example shows that the values of IS, DC and IC can differ
significantly.

Example 3.1.6. We give an example of a monoid where IS(1) = 1, DC(1) =
UB and IC(1) = ∞. The monoid is

〈a1, a2, . . . | aiaj = ajai, ai+1
i = ai

i〉.

Every equation on one unknown is of the form xi = xj . If i < j, then this is
equivalent to xi = xi+1. So all nontrivial equations are, up to equivalence,

x = 1, x2 = x, x3 = x2, . . .

and these have strictly increasing solution sets. Thus IC(1) = ∞, DC(1) =
UB and IS(1) = 1.
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In the next example we need the fact that every commutative monoid
has the compactness property, see [23].

Example 3.1.7. In the monoid of complex roots of unity, IS(1) = DC(1) =
UB and IC(1) = ∞. Let p1, p2, . . . be distinct primes. If N = p1 . . . pn, then
the equations xN/pi = 1, where i = 1, . . . , n, form an independent system,
so DC(1) ≥ IS(1) ≥ UB. On the other hand, IS(1) ≤ DC(1) ≤ UB, because
the monoid is commutative. The equations

xp1 = 1, xp1p2 = 1, xp1p2p3 = 1, . . .

form an increasing chain of equations, so IC(1) = ∞.

In the next section we will move to free monoids. They satisfy the
compactness property, but the finiteness of IS(n) is open for n ≥ 3. This
should be compared to the related case of free groups. It was proved by
Albert and Lawrence [1] that the compactness property holds for free groups
but there are unboundedly large independent systems. Thus the situation
is similar as in Example 3.1.7.

Example 3.1.8. Let Ξ = {x, y, z} and let S be the free group generated by
a and b. In this example we consider group equations u = 1, where u is an
element of the free group generated by Ξ.

Let [u, v] = u−1v−1uv be the commutator of u and v and, for m > 2, let
[u1, . . . , um] = [[u1, . . . , um−1], um] be the generalized commutator.

Let vi = z−ixiy−1zi. Now the group equations

Ei : [v1, . . . , vi−1, vi+1, . . . , vm] = 1,

where i ∈ {1, . . . ,m}, form an independent system, because

x = a, y = ai, z = b

is not a solution of Ei but is a solution of every other Ej . Thus there are
arbitrarily large independent systems of group equations on three unknowns.

In general, group equations u = 1 are not semigroup equations or monoid
equations as defined in Section 2.2, because u can contain inverses of the
unknowns. However, we can transform a group equation into a monoid
equation by replacing x−1, y−1 and z−1 with new unknowns x̄, ȳ and z̄. Then
the above system E1, . . . , Em is transformed into an independent system on
six unknowns. This shows that IS(6) = UB in the free group S. If we
would alter the definition of IS to allow group equations, then we would get
IS(3) = UB.
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3.2 Systems and Chains of Word Equations

For the rest of this chapter, we will study independent systems and decreas-
ing chains in the case of free monoids and free semigroups. The symbols IS
and DC will always refer to the maximal sizes of independent systems and
decreasing chains in the free monoid. In the free semigroup we will use the
symbols IS+ and DC+.

Periodic solutions are not very interesting, so sometimes it makes sense
to consider only systems that have a nonperiodic solution. The maximal size
of an independent system in a free monoid having a nonperiodic solution is
denoted by IS′. Similarly the maximal size of a decreasing chain having a
nonperiodic solution is denoted by DC′. Similar notation can be used for
free semigroups.

We can study independent systems or decreasing chains, we can do this
in the free monoid or in the free semigroup, and we can choose whether to re-
quire that there is a nonperiodic solution. This gives eight related questions,
namely what are the values of IS,DC, IS+,DC+, IS′,DC′, IS′

+,DC′
+.

It is clear that we have

IS+(n) ≤ IS(n), DC+(n) ≤ DC(n),

IS′
+(n) ≤ IS′(n), DC′

+(n) ≤ DC′(n)

and

IS(n) ≤ DC(n), IS+(n) ≤ DC+(n),

IS′(n) ≤ DC′(n), IS′
+(n) ≤ DC′

+(n)

for all n. We can say a little bit more about the relation between DC(n)
and DC′(n) and between the other corresponding numbers. If a decreasing
chain has a nonperiodic solution, then we can add an equation that forces
all unknowns to commute. After that we can add at least one equation, for
example x1 . . . xn = 1, and at most n equations by Theorem 2.3.2 and basic
linear algebra. Thus

DC′(n) + 2 ≤ DC(n) ≤ DC′(n) + n + 1,

DC′
+(n) + 2 ≤ DC+(n) ≤ DC′

+(n) + n + 1.

for n ≥ 2. In the case of independent systems we get even tighter bounds.
To see this, let E1, . . . , Em be an independent system and h1, . . . , hm be
solutions such that hi satisfies all of the equations except Ei. If one of the
solutions, say h1, is not periodic, then E2, . . . , Em is an independent system
with a nonperiodic solution. On the other hand, if every hi is periodic, then
m ≤ n by linear algebra, and IS′

+(n) ≥ n − 1 for n ≥ 3. Thus

IS′(n) ≤ IS(n) ≤ IS′(n) + 1,

IS′
+(n) ≤ IS+(n) ≤ IS′

+(n) + 1,
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for n ≥ 3. This means that IS′ and DC′ are basically the same as IS and
DC if we are only interested in their finiteness or asymptotic growth.

The next theorem follows from Theorems 2.3.10 and 3.1.3.

Theorem 3.2.1. For all n, we have DC(n) ≤ UB, and hence also IS(n) ≤
UB.

No better upper bounds than DC(n) ≤ UB are known for n > 2. Even
the seemingly simple question about the size of IS′(3) is still completely
open; the only thing that is known is that 2 ≤ IS′(3) ≤ UB. The lower
bound is given by the example xyz = zyx, xyyz = zyyx.

3.3 Three and Four Unknowns

Word equations on one unknown are completely trivial. They are all equiv-
alent to either the equation x = x or the equation x = ε, so

IS(1) = DC(1) = IS+(1) = DC+(1) = 1,

IS′(1) = DC′(1) = IS′
+(1) = DC′

+(1) = 0.

Equations on two unknowns are not much more interesting. By Theo-
rems 2.3.1 and 2.3.2,

IS(2) = IS+(2) = 2,

DC(2) = DC+(2) = 3,

IS′(2) = DC′(2) = IS′
+(2) = DC′

+(2) = 0.

As soon as there are at least three unknowns, the questions become
much more difficult. The cases of three and four variables were studied in
[13]. The article gives examples showing that IS′

+(3) ≥ 2, DC+(3) ≥ 6,
IS′

+(4) ≥ 3 and DC+(4) ≥ 9. We are able to give better bounds for DC+(3)
and DC(4).

First we assume that there are three unknowns x, y, z. There are
trivial examples of independent systems of three equations, for example,
x2 = y, y2 = z, z2 = x, so IS+(3) ≥ 3. There are also easy examples of
independent pairs of equations having a nonperiodic solution, like xyz =
zyx, xyyz = zyyx, so IS′

+(3) ≥ 2. Amazingly, no other bounds are known
for IS+(3), IS′

+(3), IS(3) or IS′(3).
The following chain of equations shows that DC(3) ≥ 7:

xyz = zxy, x = a, y = b, z = abab

xyxzyz = zxzyxy, x = a, y = b, z = ab

xz = zx, x = a, y = b, z = ε
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xy = yx, x = a, y = a, z = a

x = ε, x = ε, y = a, z = a

y = ε, x = ε, y = ε, z = a

z = ε, x = ε, y = ε, z = ε.

Here the second column gives a solution that is not a solution of the equation
on the next row, but is a solution of all the preceding equations. The first
two equations are those from Lemmas 2.4.3 and 2.4.8. This chain uses the
empty word, and thus does not work in the free semigroup as such. However,
a slightly more complicated example shows that also DC+(3) ≥ 7:

xxyz = zxyx, x = a, y = b, z = aabaaba

xxyxzyz = zzyxxyx, x = a, y = b, z = aaba

xz = zx, x = a, y = b, z = a

xy = yx, x = a, y = aa, z = a

x = y, x = a, y = a, z = aa

x = z, x = a, y = a, z = a

xx = x, no solutions.

For some results about the structure of equations in independent systems
on three unknowns see [14] and [15].

If we add a fourth unknown t, then we can trivially extend any inde-
pendent system by adding the equation t = x. This gives IS+(4) ≥ 4 and
IS′

+(4) ≥ 3. For chains the improvements are nontrivial. The following
chain of equations shows that DC(4) ≥ 12:

xyz = zxy, x = a, y = b, z = abab, t = a

xyt = txy, x = a, y = b, z = abab, t = abab

xyxzyz = zxzyxy, x = a, y = b, z = ab, t = abab

xyxtyt = txtyxy, x = a, y = b, z = ab, t = ab

xyxztyzt = ztxztyxy, x = a, y = b, z = ab, t = ε

xz = zx, x = a, y = b, z = ε, t = ab

xt = tx, x = a, y = b, z = ε, t = ε

xy = yx, x = a, y = a, z = a, t = a

x = ε, x = ε, y = a, z = a, t = a

y = ε, x = ε, y = ε, z = a, t = a

z = ε, x = ε, y = ε, z = ε, t = a

t = ε, x = ε, y = ε, z = ε, t = ε.
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The next theorem sums up the new bounds given in this section.

Theorem 3.3.1. DC+(3) ≥ 7 and DC(4) ≥ 12.

3.4 Lower Bounds

In [33] it is proved that IS(n) = Ω(n4) and IS+(n) = Ω(n3). The former is
proved by a construction that uses n = 10m variables and gives a system of
m4 equations. Thus IS(n) is asymptotically at least n4/10000. We present
here a slightly modified version of this construction. By “reusing” some of
the unknowns we get a bound that is asymptotically n4/1536.

Theorem 3.4.1. If n = 4m, then IS′(n) ≥ m2(m − 1)(m − 2)/6.

Proof. We use unknowns xi, yi, zi, ti, where 1 ≤ i ≤ m. The equations in
the system are

E(i, j, k, l) : xixjxkyiyjykzizjzktl = tlxixjxkyiyjykzizjzk,

where i, j, k, l ∈ {1, . . . ,m} and i < j < k. If i, j, k, l ∈ {1, . . . ,m} and
i < j < k, then

xr =

{
ab, if r ∈ {i, j, k}

ε, otherwise
yr =

{
a, if r ∈ {i, j, k}

ε, otherwise

zr =

{
ba, if r ∈ {i, j, k}

ε, otherwise
tr =

{
ababa, if r = l

ε, otherwise

is not a solution of E(i, j, k, l), but is a solution of all the other equations.
Thus the system is independent.

The idea behind this construction (both the original and the modified) is
that (ababa)k = (ab)kak(ba)k holds for k < 3, but not for k = 3. It was noted
in [51] that if we could find words ui such that (u1 . . . um)k = uk

1 . . . uk
m holds

for k < K, but not for k = K, then we could prove that IS(n) = Ω(nK+1).
However, it has been proved that such words do not exist for K ≥ 5 (see
[28]), and conjectured that such words do not exist for K = 4.

3.5 Related Questions

We can use the notion of rank to present variations of the question of the
maximal size of independent systems.

If a system has only periodic solutions, then the system can be said to
force a maximal defect effect, so IS′(n) is the maximal size of an independent
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system not doing that. But how large can an independent system be if it
forces only the minimal defect effect, that is, the system has a solution in
which the variables cannot be expressed as products of n− 2 words? In [33]
it is proved that there are such systems of size Ω(n3) in free monoids and of
size Ω(n2) in free semigroups. Again, no upper bounds are known.

Another variation would be to consider chains that satisfy

Soln−1(∅) ) Soln−1(E1) ) Soln−1(E1, E2) ) · · · ) Soln−1(E1, . . . , Em),

where Soln−1 is the set of solutions of rank n− 1. These kinds of chains will
be studied in Section 4.6.

Instead of trying to find a fixed bound for IS(n) or for some of the other
related numbers, we could also try to find a bound that depends on the
lengths of the equations. If E1, . . . , Em is an independent system or chain,
then trivially m is exponential with respect to the maximum of the lengths
|Ei|, because there are only exponentially many equations of certain size.
For some questions, we can give bounds that depend only quadratically on
the length of the shortest equation of a system, or on the length of the first
equation of a chain. This is done in Section 4.6.
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Chapter 4

Word Equations,

Polynomials and Linear

Algebra

In this chapter we introduce a new approach for proving results about word
equations with the help of polynomials and linear algebra. This allows us
to give new shorter proofs and generalizations for some old theorems.

First, in Section 4.1 we define a way to transform words into polynomials
and prove some basic results using these polynomials.

In Section 4.2 we prove that if the lengths of the unknowns are fixed,
then there is a connection between the ranks of solutions of a system of
equations and the rank of a certain polynomial matrix. This theorem is
very important for all the later results.

In Section 4.3 we analyze the results of Section 4.2 when the lengths
of the unknowns are not fixed. For every solution these lengths form an
n-dimensional vector, called the length type of the solution. We prove that
the set of length types of all solutions of rank n− 1 of a pair of equations is
covered by a finite union of (n − 1)-dimensional subspaces if the equations
are not equivalent on solutions of rank n − 1. This means that the solution
sets of pairs of equations are in some sense more structured than the solution
sets of single equations. This theorem is the key to proving the remaining
results.

Section 4.4 contains small generalizations of two earlier results. These
are nice examples of the methods developed in Section 4.2 and have some
independent interest.

In Section 4.5 we prove a theorem about unbalanced equations. This
gives a considerably simpler reproof and a generalization of a result in [24].

Finally, in Section 4.6 we return to the question about sizes of indepen-
dent systems. There is a trivial bound for the size of a system depending
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on the length of the longest equation, because there are only exponentially
many equations of a fixed length. We prove that if the system is independent
even when considering only solutions of rank n − 1, then there is an upper
bound for the size of the system depending quadratically on the length of
the shortest equation. Even though it does not give a fixed bound even in
the case of three unknowns, it is a first result of its type – hence opening,
we hope, a new avenue for future research.

This chapter is based on the article [56].

4.1 Words and Polynomials

In this section we give proofs for some well-known results that have been
mentioned in Chapter 2. These serve as examples of the polynomial methods
used. Even though the standard proofs of these are simple, we hope that
the proofs given here illustrate how properties of words can be formulated
and proved in terms of polynomials.

Let Σ ⊂ N1 be an alphabet of numbers. For a word w = a0 . . . an−1 ∈ Σn

we define a polynomial

Pw = a0 + a1X
1 + · · · + an−1X

n−1

and, if n = |w| > 0, a rational function

Rw =
Pw

Xn − 1
.

Now w 7→ Pw is an injective mapping from words to polynomials. Here we
need the assumption 0 /∈ Σ; if injectivity of Pw would not be needed, then
also 0 could be a letter. If w1, . . . , wm ∈ Σ∗, then

Pw1...wm = Pw1 + Pw2X
|w1| + · · · + PwmX |w1...wm−1|, (4.1)

and if w1, . . . , wm ∈ Σ+, then

Pw1...wm =Rw1(X
|w1| − 1) + Rw2(X

|w1w2| − X |w1|)

+ · · · + Rwm(X |w1...wm| − X |w1...wm−1|).

If w ∈ Σ+ and k ∈ N0, then

Pwk = Pw
Xk|w| − 1

X |w| − 1
= Rw(Xk|w| − 1).

The polynomial Pw can be viewed as a characteristic polynomial of the
word w. We could also replace X with a suitable number b and get a number
whose reverse b-ary representation is w. Or we could let the coefficients of
Pw be from some other commutative ring than Z. Similar ideas have been
used to analyze words in many places, see e.g. [39] and [58].
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Example 4.1.1. If w = 1212, then Pw = 1 + 2X + X2 + 2X3 and

Rw =
1 + 2X + X2 + 2X3

X4 − 1
=

(1 + X2)(1 + 2X)

(X2 + 1)(X2 − 1)
=

1 + 2X2

X2 − 1
.

Recall that a word w is called primitive if it is not of the form uk for any
k > 1. If w = uk and u is primitive, then u is a primitive root of w.

Lemma 4.1.2. If w is primitive, then Pw is not divisible by any polynomial
of the form (X |w| − 1)/(Xn − 1), where n < |w| is a divisor of |w|.

Proof. If Pw is divisible by (X |w| − 1)/(Xn − 1), then there are numbers
a0, . . . , an−1 such that

Pw = (a0 + a1X
1 + · · · + an−1X

n−1)
X |w| − 1

Xn − 1

= (a0 + a1X
1 + · · · + an−1X

n−1)(1 + Xn + · · · + X |w|−n),

so w = (a0 . . . an−1)
|w|/n.

The next two theorems are among the most basic and well-known results
in combinatorics on words (except for item (4) of Theorem 4.1.4, which,
however, appeared in [30] in a slightly different form).

Theorem 4.1.3. Every nonempty word has a unique primitive root.

Proof. Let um = vn, where u and v are primitive. We need to show that
u = v. We have

Pu
Xm|u| − 1

X |u| − 1
= Pum = Pvn = Pv

Xn|v| − 1

X |v| − 1
.

Because m|u| = n|v|, we get Pu(X |v|−1) = Pv(X
|u|−1). If d = gcd(|u|, |v|),

then gcd(X |u|− 1,X |v| − 1) = Xd − 1. Thus Pu must be divisible by (X |u|−
1)/(Xd − 1) and Pv must be divisible by (X |v| − 1)/(Xd − 1). By Lemma
4.1.2, both u and v can be primitive only if |u| = d = |v|.

The primitive root of a word w ∈ Σ+ is denoted by ρ(w).

Theorem 4.1.4. For u, v ∈ Σ+, the following are equivalent:

1. ρ(u) = ρ(v),

2. if U, V ∈ {u, v}∗ and |U | = |V |, then U = V ,

3. u and v satisfy a nontrivial relation,

4. Ru = Rv.
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Proof. (1) ⇒ (2): U = ρ(u)|U |/|ρ(u)| = ρ(u)|V |/|ρ(u)| = V.
(2) ⇒ (3): Clear.
(3) ⇒ (4): Let u1 . . . um = v1 . . . vn, where ui, vj ∈ {u, v}. Now

0 =Pu1...um − Pv1...vn

=Ru1(X
|u1| − 1) + · · · + Rum(X |u1...um| − X |u1...um−1|)

− Rv1(X
|v1| − 1) − · · · − Rvn(X |v1...vn| − X |v1...vn−1|)

=Rup − Rvp

for some polynomial p. If m 6= n or ui 6= vi for some i, then p 6= 0, and thus
Ru = Rv.

(4) ⇒ (1): We have Pu|v| = Ru(X |u||v| − 1) = Rv(X
|u||v| − 1) = Pv|u| , so

u|v| = v|u| and ρ(u) = ρ(u|v|) = ρ(v|u|) = ρ(v).

Similarly, polynomials can be used to give a simple proof for Theorem
2.3.4. In fact, one of the original proofs in [18] uses power series. The proof
we give here is essentially this original proof formulated in terms of our
polynomials. Algebraic techniques have also been used to prove variations
of this theorem [49].

Theorem 4.1.5 (Fine and Wilf). If ui and vj have a common prefix of
length |u| + |v| − gcd(|u|, |v|), then ρ(u) = ρ(v).

Proof. Let gcd(|u|, |v|) = d, lcm(|u|, |v|) = m, m/|u| = r and m/|v| = s. If
ρ(u) 6= ρ(v), then ur 6= vs, so ur and vs have a maximal common prefix of
length k < m. Now

Pur − Pvs =
Xr|u| − 1

X |u| − 1
Pu −

Xs|v| − 1

X |v| − 1
Pv

=
(Xm − 1)(Xd − 1)

(X |u| − 1)(X |v| − 1)

(
X |v| − 1

Xd − 1
Pu −

X |u| − 1

Xd − 1
Pv

)

is divisible by Xk, but not by Xk+1, so also the polynomial

X |v| − 1

Xd − 1
Pu −

X |u| − 1

Xd − 1
Pv

is divisible by Xk, but not by Xk+1. Thus k can be at most the degree of
this polynomial, which is at most |u| + |v| − d − 1.

4.2 Solutions of Fixed Length

In this section we apply polynomial techniques to word equations. From
now on, we will assume that there are n unknowns, they are ordered as
x1, . . . , xn and Ξ is the set of these unknowns.
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Recall that the rank of a morphism h is the smallest number r for which
there is a set A of r words such that h(x) ∈ A∗ for every unknown x.

Let h : Ξ∗ → Σ∗ be a morphism. The length type of h is the vector

L = (|h(x1)|, . . . , |h(xn)|) ∈ Nn
0 .

This length type L determines a morphism

lenL : Ξ∗ → N0, lenL(w) = |h(w)|.

It is important that lenL depends only on L and not on h.
If E is a word equation, the set of its solutions is denoted by Sol(E), the

set of solutions of rank r by Solr(E), the set of solutions of length type L
by SolL(E) and the set of solutions of rank r and length type L by SolLr (E).
These can be naturally generalized for systems of equations.

For a word equation E : y1 . . . yk = z1 . . . zl (where yi, zi ∈ Ξ), a variable
x ∈ Ξ and a length type L, let

QE,x,L =
∑

yi=x

X lenL(y1...yi−1) −
∑

zi=x

X lenL(z1...zi−1).

Informally, this polynomial encodes the positions of x in the equation E.

Theorem 4.2.1. A morphism h : Ξ∗ → Σ∗ of length type L is a solution of
an equation E : u = v if and only if

∑

x∈Ξ

QE,x,LPh(x) = 0.

Proof. Now h(u) = h(v) if and only if Ph(u) = Ph(v), and we can write the
polynomial Ph(u) − Ph(v) as

∑
x∈Ξ QE,x,LPh(x) by (4.1).

Theorem 4.2.1 means that if we fix a length type L, then we can turn a
word equation into a linear equation where the polynomials QE,x,L are the
coefficients. A solution for this linear equation is an n-dimensional vector
over the field of rational functions, and h ∈ SolL(E) corresponds to a solution
(Ph(x1), . . . Ph(xn)) of the linear equation.

Example 4.2.2. Let Ξ = {x, y, z}, E : xyz = zxy and L = (1, 1, 2). Now

QE,x,L = 1 − X2, QE,y,L = X − X3, QE,z,L = X2 − 1.

If h is the morphism defined by h(x) = 1, h(y) = 2 and h(z) = 12, then h is
a solution of E and

QE,x,LPh(x) + QE,y,LPh(y) + QE,z,LPh(z)

=(1 − X2) · 1 + (X − X3) · 2 + (X2 − 1)(1 + 2X) = 0.
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At this point we start using linear algebra. We will do this over two
fields: the field of rational numbers (for the first time in Lemma 4.2.5) and
the field of rational functions (for the first time in Lemma 4.2.6). We start
with an example.

Example 4.2.3. Consider the morphism h : {x1, x2, x3}
∗ → {1, 2}∗ of rank

2 defined by h(x1) = 1, h(x2) = 2, h(x3) = 12. If h is a solution of an
equation E, then so is g ◦ h for every morphism g : {1, 2}∗ → {1, 2}∗. The
length type of g ◦ h is

(|g(1)|, |g(2)|, |g(12)|) = |g(1)| · (1, 0, 1) + |g(2)| · (0, 1, 1).

Because the vectors (1, 0, 1) and (0, 1, 1) are linearly independent, these
length types essentially form a two-dimensional space (of course |g(1)| and
|g(2)| are nonnegative integers, so the length types don’t form the whole
space). This observation is formalized and generalized in Lemma 4.2.5.

A morphism φ : Ξ∗ → Ξ∗ is an elementary transformation if there are
two unknowns x, y ∈ Ξ so that φ(y) ∈ {xy, x} and φ(z) = z for z ∈ Ξ r {y}.
If φ(y) = xy, then φ is regular, and if φ(y) = x, then φ is singular. The next
lemma follows immediately from results in [43].

Lemma 4.2.4. Every solution h of an equation E has a factorization h =
θ ◦ φ ◦ α, where α(x) ∈ {x, ε} for all x ∈ Ξ, φ = φm ◦ · · · ◦ φ1, every φi is
an elementary transformation, φ ◦ α is a solution of E and θ(x) 6= ε for all
x ∈ Ξ. If α(x) = ε for s unknowns x and t of the φi are singular, then the
rank of φ ◦ α is n − s − t.

Lemma 4.2.5. Let E be an equation on n unknowns and let h ∈ SolLr (E).
There is an r-dimensional subspace V of Qn containing L such that the set
of those length types of morphisms in Solr(E) that are in V is not covered
by any finite union of (r − 1)-dimensional spaces.

Proof. For arbitrary morphisms F : Ξ∗ → Ξ∗ and G : Ξ∗ → Σ∗, let LG =
(|G(x1)|, . . . , |G(xn)|)T be the length type of G as a column vector and let
AF = (|F (xi)|xj

) be an n × n matrix. Now LG◦F = AF LG. More generally,
if F1, . . . , Fm are morphisms Ξ∗ → Ξ∗, then

LG◦Fm◦···◦F1 = AF1 . . . AFmLG.

Let h = θ ◦φm ◦ · · · ◦φ1 ◦α as in Lemma 4.2.4. Let f = φm ◦ · · · ◦φ1 ◦α.
The rank of f is n − s − t ≥ r, if s and t are as in Lemma 4.2.4. Now g ◦ f
is a solution of E for every morphism g : Ξ∗ → Σ∗. The length type of g ◦ f
is Lg◦f = Lg◦φm◦···◦φ1◦α = ALg, where A = AαAφ1 . . . Aφm

. To prove the
theorem, we need to show that the rank of A is at least r. This can be done
by determining the ranks of the matrices Aα and Aφk

.
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The matrix Aα is a diagonal matrix and the ith element on the diagonal
is 0 if α(xi) = ε and 1 otherwise. Thus the rank of Aα is n − s.

If φ is the elementary transformation defined by φ(x1) = x2x1, then

Aφ =




1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . .
0 0 0 . . . 1




is a matrix of rank n (this is an identity matrix except for the second element
on the first row). In general, the rank of Aφ is n for every regular elementary
transformation φ.

If φ is the elementary transformation defined by φ(x1) = x2, then

Aφ =




0 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . .
0 0 0 . . . 1




is a matrix of rank n − 1 (this is an identity matrix except for the first two
elements on the first row). In general, the rank of Aφ is n − 1 for every
singular elementary transformation φ.

The rank of Aα is n − s, t of the matrices Aφk
have rank n − 1 and the

rest have rank n. Thus the rank of A is at least n − s − t, which is at least
r.

Lemma 4.2.6. Let E be an equation on n unknowns and let h ∈ SolLr (E).
There are morphisms f : Ξ∗ → Ξ∗ and θ : Ξ∗ → Σ∗ and polynomials pij

such that the following conditions hold:

1. h = θ ◦ f ,

2. f is a solution of E,

3. θ(x) 6= ε for every x ∈ Ξ,

4. P(g◦f)(xi) =
∑

pijPg(xj) for all i, j if g : Ξ∗ → Σ∗ is a morphism of the
same length type as θ,

5. r of the vectors (p1j , . . . , pnj) ∈ Q(X)n, where j = 1, . . . , n, are linearly
independent.

Proof. The proof is quite similar to the proof of Lemma 4.2.5.
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For arbitrary morphisms F : Ξ∗ → Ξ∗ and G : Ξ∗ → Σ∗ and length type
L, define an n-dimensional column vector PG = (PG(x1), . . . , PG(xn))

T and
an n × n polynomial matrix BF,L = (bij), where

bij =
∑

uxj≤F (xi)

X lenL(u).

If L is the length type of G, then PG◦F = BF,LPG. More generally, if
F1, . . . , Fm are morphisms Ξ∗ → Ξ∗ and Lk is the length type of G ◦ Fm ◦
· · · ◦ Fk+1, then

PG◦Fm◦···◦F1 = BF1,L1 . . . BFm,LmPG.

The matrices BF,L will be used to define the polynomials pij .

Let h = θ◦φm◦· · ·◦φ1◦α as in Lemma 4.2.4. Let f = φm◦· · ·◦φ1◦α. The
first three conditions are satisfied by θ and f . The rank of f is n−s− t ≥ r,
if s and t are as in Lemma 4.2.4.

Let L be the length type of θ and let g be a morphism of length type L.
Now Pg◦f = Pg◦φm◦···◦φ1◦α = BPg, where B = Bα,L0Bφ1,L1 . . . Bφm,Lm

and
Lk is the length type of g ◦ φm ◦ · · · ◦ φk+1. Let B = (pij). Now the fourth
condition holds, because Pg◦f = BPg.

To prove that the last condition holds, it must be proved that the rank
of the matrix B is at least r. This can be done by determining the ranks of
the matrices Bα,L and Bφk,L.

The matrix Bα,L is a diagonal matrix and the ith element on the diagonal
is 0 if α(xi) = ε and 1 otherwise. Thus the rank of Bα,L is n − s.

If φ is the elementary transformation defined by φ(x1) = x2x1, then

Bφ,L =




X lenL(x2) 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . .
0 0 0 . . . 1




is a matrix of rank n (this is an identity matrix except for the first two
elements on the first row). In general, the rank of Bφ,L is n for every regular
elementary transformation φ.

If φ is the elementary transformation defined by φ(x1) = x2, then

Bφ,L =




0 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
. . .
0 0 0 . . . 1



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is a matrix of rank n − 1 (again, this is an identity matrix except for the
first two elements on the first row). In general, the rank of Bφ,L is n− 1 for
every singular elementary transformation φ.

The rank of Bα,L0 is n− s, t of the matrices Bφk,Lk
have rank n− 1 and

the rest have rank n. Thus the rank of B is at least n − s − t, which is at
least r.

With the help of these lemmas, we are going to analyze solutions of some
fixed length type. Principal (or fundamental) solutions, which were implic-
itly present in the previous lemmas (see [43]), have been used in connection
with fixed lengths also in [27] and [28].

Theorem 4.2.7. Let E1, . . . , Em be a system of equations on n unknowns
and let L ∈ Nn

0 . Let qij = QEi,xj ,L. If SolLr (E1, . . . , Em) 6= ∅, then the
rank of the m × n polynomial matrix (qij) is at most n − r. If the rank of
the matrix is 1, at most one component of L is zero and the equations are
nontrivial, then SolL(E1) = · · · = SolL(Em).

Proof. Let h ∈ SolLr (E1, . . . , Em). If r = 1, the first claim follows from
Theorem 4.2.1, so assume that r > 1. Let E be an equation that has the
same nonperiodic solutions as the system. We will use Lemma 4.2.6 for
this equation. Fix k and let g1 : Ξ∗ → Σ∗ be the morphism determined by
g1(xi) = 1|θ(xi)| for all i and let g2 : Ξ∗ → Σ∗ be the morphism determined
by g2(xk) = 21|θ(xk)|−1 and g2(xi) = 1|θ(xi)| for all i 6= k. Now g1 ◦ f and
g2 ◦ f are solutions of every El, so

n∑

i=1

QEl,xi,LP(g1◦f)(xi) = 0 and

n∑

i=1

QEl,xi,LP(g2◦f)(xi) = 0

for all l by Theorem 4.2.1. Because also P(g1◦f)(xi) =
∑n

j=1 pijPg1(xj) and
P(g2◦f)(xi) =

∑n
j=1 pijPg2(xj), we get

0 =

n∑

i=1

QEl,xi,L(P(g2◦f)(xi) − P(g1◦f)(xi))

=

n∑

i=1

QEl,xi,L

n∑

j=1

pij(Pg2(xj) − Pg1(xj)) =

n∑

i=1

QEl,xi,Lpik

for all l. Thus the vectors (p1j , . . . , pnj) are solutions of the linear system of
equations determined by the matrix (qij). Because at least r of these vectors
are linearly independent, the rank of the matrix is at most n − r.

If at most one component of L is zero and the equations are nontrivial,
then all rows of the matrix are nonzero. If also the rank of the matrix is
1, then all rows are multiples of each other and the second claim follows by
Theorem 4.2.1.
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4.3 Sets of Solutions

Now we analyze how the polynomials QE,x,L behave when L is not fixed.
Let

M = {a1X1 + · · · + anXn | a1, . . . , an ∈ N0} ⊂ Z[X1, . . . ,Xn]

be the additive monoid of linear homogeneous polynomials with nonnegative
integer coefficients on the variables X1, . . . ,Xn. The monoid ring of M over
Z is the ring formed by expressions of the form

a1X
p1 + · · · + akX

pk ,

where ai ∈ Z and pi ∈ M, and the addition and multiplication of these
generalized polynomials is defined in a natural way. This ring is denoted by
Z[X;M]. If L ∈ Zn, then the value of a polynomial p ∈ M at the point
(X1, . . . ,Xn) = L is denoted by p(L), and the polynomial we get by making
this substitution in s ∈ Z[X;M] is denoted by s(L).

The ring Z[X;M] is isomorphic to the ring Z[Y1, . . . , Yn] of polynomials
on n variables. The isomorphism is given by XXi 7→ Yi. However, the
generalized polynomials where the exponents are in M are suitable for our
purposes.

If ai ≤ bi for i = 1, . . . , n, then we use the notation

a1X1 + · · · + anXn � b1X1 + · · · + bnXn.

If p, q ∈ M and p � q, then p(L) ≤ q(L) for all L ∈ Nn
0 .

For an equation E : xi1 . . . xir = xj1 . . . xjs we define

SE,x =
∑

xik
=x

XXi1
+···+Xik−1 −

∑

xjk
=x

XXj1
+···+Xjk−1 ∈ Z[X;M].

Now SE,x(L) = QE,x,L. Theorem 4.2.1 can be formulated in terms of these
generalized polynomials.

Theorem 4.3.1. A morphism h : Ξ∗ → Σ∗ of length type L is a solution of
an equation E if and only if

∑

x∈Ξ

SE,x(L)Ph(x) = 0.

Example 4.3.2. Let E : x1x2x3 = x3x1x2. Now

SE,x1 = 1 − XX3 , SE,x2 = XX1 − XX1+X3, SE,x3 = XX1+X2 − 1.

The length of an equation E : u = v is |E| = |uv|. The number of
occurrences of an unknown x in E is |E|x = |uv|x.
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Theorem 4.3.3. Let E1, E2 be a pair of nontrivial equations on n un-
knowns. Let Soln−1(E1) 6= Soln−1(E2). For some unknowns xk, xl, the
set of length types of solutions of the pair of rank n−1 is covered by a union
of (|E1|xk

+ |E1|xl
)2 (n− 1)-dimensional subspaces of Qn. If V1, . . . , Vm is a

minimal such cover and L ∈ Vi for some i, then SolLn−1(E1) = SolLn−1(E2).

Proof. Let sij = SEi,xj
for i = 1, 2 and j = 1, . . . , n. If all 2 × 2 minors of

the 2 × n matrix (sij) are zero, then for all length types L of solutions of
rank n− 1 the rank of the matrix (qij) in Theorem 4.2.7 is 1 and E1 and E2

are equivalent, which is a contradiction. Thus there are k, l such that

tkl = s1ks2l − s1ls2k 6= 0.

The generalized polynomial tkl can be written as

tkl =
M∑

i=1

Xpi −
N∑

i=1

Xqi ,

where pi, qi ∈ M and pi 6= qj for all i, j. If L is a length type of a solution of
rank n−1, then M = N and L must be a solution of the system of equations

pi = qσ(i) (i = 1, . . . ,M) (4.2)

for some permutation σ. For every σ the equations determine an at most
(n − 1)-dimensional space.

Let the equations be E1 : u1 = v1 and E2 : u2 = v2. Let

|u1|xk
= A, |v1|xk

= A′, |u2|xk
= B, |v2|xk

= B′,

|u1|xl
= C, |v1|xl

= C ′, |u2|xl
= D, |v2|xl

= D′.

Now s1k, s2l, s1l, s2k can be written as

s1k =

A∑

i=1

Xai −

A′∑

i=1

Xa′
i , s2l =

B∑

i=1

Xbi −

B′∑

i=1

Xb′i ,

s1l =

C∑

i=1

Xci −

C′∑

i=1

Xc′i , s2k =

D∑

i=1

Xdi −

D′∑

i=1

Xd′i ,

where ai � ai+1, a′i � a′i+1, and so on. The polynomials pi form a subset of
the polynomials ai + bj , a′i + b′j, ci + d′j and c′i + dj (the reason that they
form just a subset is that we assumed pi 6= qj for all i, j). For any i, let ji

be the smallest index j such that ai + bj = pm for some m. Now for every
i, j,m such that ai + bj = pm we have ai + bji

� pm. We can do a similar
thing for the polynomials a′i, b

′
i and ci, d

′
i and c′i, di. In this way we obtain at

most A+A′ +C +C ′ polynomials pi such that for any L the value of one of
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these polynomials is minimal among the values pi(L). Similarly we obtain
at most A + A′ + C + C ′ “minimal” polynomials qi. If L satisfies one of the
systems (4.2), then the smallest of the values pi(L) must be the same as the
smallest of the values qi(L). Thus L must satisfy some equation pi = qj,
where pi and qj are some of the “minimal” polynomials. There are at most

(A + A′ + C + C ′)2 = (|E1|xk
+ |E1|xl

)2

possible pairs of such polynomials, and each of them determines an (n− 1)-
dimensional space.

Consider the second claim. Because the cover is minimal, there is a
solution of rank n − 1 whose length type is in Vi, but not in any other Vj .
By Lemma 4.2.5, the set of length types of solutions of rank n − 1 in this
space cannot be covered by a finite union of (n − 2)-dimensional spaces.
Thus one of the systems (4.2) must determine the space Vi. The same holds
for systems coming from all other nonzero 2 × 2 minors of the matrix (sij),
so E1 and E2 have the same solutions of rank n − 1 and length type L for
all L ∈ Vi by Theorem 4.2.7.

The following example illustrates the proof of Theorem 4.3.3. It gives a
pair of equations on three unknowns where the required number of subspaces
is two. The equations are those from Lemmas 2.4.3 and 2.4.8. We do not
know any example where more spaces would be necessary.

Example 4.3.4. Consider the equations

E1 : x1x2x3 = x3x1x2 and E2 : x1x2x1x3x2x3 = x3x1x3x2x1x2

and the generalized polynomial

s =SE1,x1SE2,x3 − SE1,x3SE2,x1

=X2X1+X2 + X2X1+2X2+X3 + XX1+2X3 + XX1+X2+X3

− X2X1+X2+X3 − XX1+X3 − X2X1+2X2 − XX1+X2+2X3 .

If L is a length type of a nontrivial solution of the pair E1, E2, then s(L) = 0.
If s(L) = 0, then L must satisfy an equation p = q, where

p ∈ {2X1 +X2,X1 +2X3,X1 +X2 +X3} and q ∈ {X1 +X3, 2X1 +2X2}.

The possible relations are

X3 = 0, X1 + X2 = X3, X2 = 0, X1 + 2X2 = 2X3.

If L satisfies one of the first three, then s(L) = 0. If L satisfies the last one,
then s(L) 6= 0, except if L = 0. So if h is a nonperiodic solution, then

|h(x3)| = 0 or |h(x1x2)| = |h(x3)| or |h(x2)| = 0.

There are no nonperiodic solutions with h(x2) = ε, but every h with h(x3) =
ε or h(x1x2) = h(x3) is a solution.
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4.4 Minor Applications

Theorem 2.3.6 can be proved with the help of Theorem 4.2.7.

Theorem 4.4.1 (Graph lemma). Consider a system of equations whose
graph has r connected components. If h is a solution of this system and
h(xi) 6= ε for all i, then the rank of h is at most r.

Proof. We can assume that the connected components are

{x1, . . . , xi2−1}, {xi2 , . . . , xi3−1}, . . . , {xir , . . . , xn}

and the equations are
xj · · · = xkj

· · · ,

where j ∈ {1, . . . , n} r {1, i2, . . . , ir} and kj < j. Let qij be as in Theorem
4.2.7. If we remove the columns 1, i2, . . . , ir from the (n−r)×n matrix (qij),
we obtain a square matrix M where the diagonal elements are not divisible
by X, but all elements above the diagonal are divisible by X. This means
that det(M) is not divisible by X, so det(M) 6= 0. Thus the rank of the
matrix (qij) is n − r and h has rank at most r by Theorem 4.2.7.

The next theorem generalizes a result from [14] for more than three
unknowns.

Theorem 4.4.2. If a pair of nontrivial equations on n unknowns has a
solution h of rank n− 1 where no two of the unknowns commute, then there
is a number k ≥ 1 such that the equations are of the form x1 · · · = xk

2x3 · · · .

Proof. By Theorem 4.4.1, the equations must be of the form x1 · · · = x2 · · · .
Let them be

x1uy · · · = x2vz · · · and x1u
′y′ · · · = x2v

′z′ · · · ,

where u, v, u′, v′ ∈ {x1, x2}
∗ and y, z, y′, z′ ∈ {x3, . . . , xn}. We can assume

that z = x3 and

|h(x2v)| ≤ |h(x1u)|, |h(x1u
′)|, |h(x2v

′)|.

If it would be |h(x1u)| = |h(x2v)|, then h(x1) and h(x2) would commute,
so |h(x1u)| > |h(x2v)|. If v would contain x1, then h(x1) and h(x2) would
commute by Theorem 4.1.5, so v = xk−1

2 for some k ≥ 1.
Let L be the length type of h and let qij be as in Theorem 4.2.7. By

Theorem 4.2.7, the rank of the matrix (qij) must be 1 and thus q12q23 −

q13q22 = 0. The term of q13q22 of the lowest degree is X |h(xk
2)|. The same

must hold for q12q23, and thus the term of q23 of the lowest degree must be
−X |h(xk

2)|. We know that x2v = xk
2 and assumed that |h(x2v)| ≤ |h(x2v

′)|.
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If it would be |h(x2v)| < |h(x2v
′)|, then h(x3) would start in h(x2v

′z′ . . . )
before the end h(x2v

′), which is not possible. This means that |h(x2v
′)| =

|h(xk
2)| ≤ |h(x1u

′)| and z′ = x3. As above, we conclude that |h(x2v
′)| <

|h(x1u
′)|, v′ cannot contain x1 and v′ = xk−1

2 .

It was proved in [38] that if

s0u
i
1s1 . . . ui

msm = t0v
i
1t1 . . . vi

ntn

holds for m + n + 3 consecutive values of i, then it holds for all i. By using
similar ideas as in Theorem 4.2.7, we improve this bound to m+n and prove
that the values do not need to be consecutive. In [38] it was also stated that
the arithmetization and matrix techniques in [65] would give a simpler proof
of a weaker result. Similar questions have been studied in [29] and there are
relations to independent systems [51]; see also the comment in the end of
Section 3.4.

Theorem 4.4.3. Let m,n ≥ 1, sj, tj ∈ Σ∗ and uj, vj ∈ Σ+. Let

Ui = s0u
i
1s1 . . . ui

msm and Vi = t0v
i
1t1 . . . vi

ntn.

If Ui = Vi holds for m + n values of i, then it holds for all i.

Proof. The equation Ui = Vi is equivalent to PUi
− PVi

= 0. Because

PUi
=

m∑

j=1

(
Psj−1 + Puj

Xi|uj | − 1

X |uj | − 1
X |sj−1|

)
Xi|u1...uj−1|+|s0...sj−2|

+ PsmXi|u1...um|+|s0...sm−1|

and PVi
is of a similar form, this equation can be written as

m∑

j=0

yjX
i|u1...uj | +

∑

k∈K

zkX
i|v1...vk| = 0, (4.3)

where yj, zk are some polynomials that do not depend on i and K is the
set of those k ∈ {0, . . . n} for which |v1 . . . vk| is not any of the numbers
|u1 . . . uj| (j = 0, . . . ,m). If Ui1 = Vi1 and Ui2 = Vi2 , then

(i1 − i2)|u1 . . . um| = |Ui1 | − |Ui2 | = |Vi1 | − |Vi2 | = (i1 − i2)|v1 . . . vn|.

Thus |u1 . . . um| = |v1 . . . vn| and the size of K is at most n − 1. If (4.3)
holds for m + 1 + #K ≤ m + n values of i, it can be viewed as a system of
equations where yj, zk are unknowns. The coefficients of this system form
a generalized Vandermonde matrix whose determinant is nonzero, so the
system has a unique solution yj = zk = 0 for all j, k. Now (4.3) holds for all
i and Ui = Vi for all i.
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4.5 Unbalanced Equations

Recall that an equation u = v is balanced if |u|x = |v|x for every unknown
x. With the help of Theorem 4.3.3 we can generalize Theorem 2.3.8. Our
proof is also significantly simpler than the original proof of Theorem 2.3.8
in [24].

Theorem 4.5.1. Let E1, E2 be a pair of equations on n unknowns having a
solution of rank n−1. If E1 is not balanced, then Soln−1(E1) ⊆ Soln−1(E2).

Proof. If E1 is the equation u = v and h is a solution of E1, then

n∑

i=1

|u|xi
|h(xi)| =

n∑

i=1

|v|xi
|h(xi)|

and |u|xi
6= |v|xi

for at least one i. Thus the set of length types of solutions
of E1 is covered by a single (n − 1)-dimensional space V . Because the pair
E1, E2 has a solution of rank n−1, V is a minimal cover for the length types
of the solutions of the pair of rank n − 1. By Theorem 4.3.3, E1 and E2

have the same solutions of length type L and rank n − 1 for all L ∈ V .

Another way to think of this result is that if E1 is not balanced but has
a solution of rank n − 1 that is not a solution of E2, then the pair E1, E2

causes a larger than minimal defect effect.
If h : Ξ∗ → Σ∗ is a morphism, then the entire system generated by h is

the set of all equations satisfied by h. It is denoted by Kh. As a consequence
of Theorem 4.5.1, we get the following result about entire systems. The case
of three unknowns was proved in [24].

Corollary 4.5.2. If g, h : Ξ∗ → Σ∗ are morphisms of rank n − 1 and
Kg 6= Kh, then Kg ∩ Kh contains only balanced equations.

Proof. We can assume that there is an equation E2 ∈ Kg r Kh. For any
equation E1 ∈ Kg ∩Kh, g is a solution of the pair E1, E2 and h is a solution
of E1 but not of E2. By Theorem 4.5.1, E1 must be balanced.

4.6 Upper Bounds for the Lengths of Chains

We study the following variation of the question about maximal sizes of
chains: how long can a sequence of nontrivial equations E1, . . . , Em be if

Soln−1(E1) ) Soln−1(E1, E2) ) · · · ) Soln−1(E1, . . . , Em)?

We prove an upper bound depending quadratically on the length of the
first equation. For three unknowns we get a similar bound for the size of
independent systems and chains.
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Theorem 4.6.1. Let E1, . . . , Em be nontrivial equations on n unknowns
and let

Soln−1(E1) ) Soln−1(E1, E2) ) · · · ) Soln−1(E1, . . . , Em) 6= ∅.

If the set of length types of solutions of the pair E1, E2 of rank n − 1 is
covered by a union of N (n − 1)-dimensional subspaces, then m ≤ N + 1.
There are two unknowns x, y such that m ≤ (|E1|x + |E1|y)

2 + 1.

Proof. We can assume that Ei is equivalent to the system E1, . . . , Ei for all
i ∈ {1, . . . ,m}. Let the set of length types of solutions of E2 of rank n−1 be
covered by the (n− 1)-dimensional spaces V1, . . . , VN . Some subset of these
spaces forms a minimal cover for the length types of solutions of E3 of rank
n− 1. If this minimal cover would be the whole set, then E2 and E3 would
have the same solutions of rank n− 1 by the second part of Theorem 4.3.3.
Thus the set of length types of solutions of E3 of rank n − 1 is covered by
some N − 1 of these spaces. We conclude inductively that the set of length
types of solutions of Ei of rank n − 1 is covered by some N − i + 2 of these
spaces for all i ∈ {2, . . . ,m}. It must be N −m + 2 ≥ 1, so m ≤ N + 1. The
second claim follows by Theorem 4.3.3.

In the case of three unknowns, Theorem 4.6.1 gives an upper bound de-
pending on the length of the shortest equation for the size of an independent
system of equations, or an upper bound depending on the length of the first
equation for the size of a chain of equations. A better bound in Theorem
4.3.3 would immediately give a better bound in the following corollary.

Corollary 4.6.2. If E1, . . . , Em is an independent system on three un-
knowns having a nonperiodic solution, then m ≤ (|E1|x + |E1|y)

2 + 1 for
some x, y ∈ Ξ. If E1, . . . , Em is a decreasing chain of equations on three
unknowns, then m ≤ (|E1|x + |E1|y)

2 + 5 for some x, y ∈ Ξ.

Corollary 4.6.2 means that as soon as we take one equation on three un-
knowns, we get a fixed bound for the size of independent systems containing
that equation.

It is worth noting that the bounds in Theorem 4.6.1 and Corollary 4.6.2
do not depend on the number of unknowns, only on the length of one equa-
tion.

Getting a similar bound for the sizes of independent systems or de-
creasing chains in the case of more than three unknowns remains an open
problem. Such a bound would have to depend on the number of unknowns.
Indeed, in Theorem 4.6.1 it is not enough to assume that the equations are
independent and have a common solution of rank n − 1. If the number of
unknowns is not fixed, then there are arbitrarily large such systems where
the length of every equation is 10 [33].
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Chapter 5

Parametric Solutions

In this chapter we reprove Hmelevskii’s theorem: every equation on three
unknowns has a parametric solution. We also analyze this proof to obtain
an exponential bound for the size of the parametric solution. This gives an
exponential bound for the size of the shortest nontrivial solution, which, in
turn, proves that the existence of such a solution can be solved in nondeter-
ministic polynomial time.

The general structure of our new proof is quite similar to the original
proof of Hmelevskii, and many of the lemmas in this chapter can be found
in [26] in some form. However, many parts of the proofs are different. For
example, exponential equations are treated in a totally different way. The
use of more modern results such as Theorem 2.3.6 simplifies the proofs of
many lemmas. Some large parts of the original proof become unnecessary.
The results about sizes of parametric solutions and about complexity of
solving equations are entirely new.

In Section 5.1 we study the form of parametric solutions.

Section 5.2 deals with exponential equations, which are an important
tool used in our proof.

In Section 5.3 we are able to prove Hmelevskii’s theorem for a large class
of equations. All other equations will be reduced to these so called basic
equations later on.

The main tools in this process are images and θ-images, which are the
topic of Section 5.4.

Finally, in the last three sections a so called basic tree is constructed for
an arbitrary equation, and this completes the proof of Hmelevskii’s theorem.
An upper bound for the height of such a tree gives an upper bound for
the length of the parametric solution. This leads to an upper bound for
the length of the shortest nontrivial solution, and to a nondeterministic
polynomial time algorithm for solving the existence of such a solution.

This chapter is based on the articles [34] and [55].
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5.1 Remarks about Parametric Solutions

Parametric words and solutions were defined in Section 2.5. In this section
we take a closer look at them.

In addition to ordinary word equations, we also consider one-sided equa-
tions xU ⇉ yV . A morphism h : Ξ∗ → Σ∗ is a solution of such an equation,
if h(xU) = h(yV ) and |h(x)| ≥ |h(y)|.

Periodic solutions are easy to find and represent, so in many cases it is
enough to consider nonperiodic solutions.

If Σ = {a1, . . . , an}, then U ∈ Σ∗ can be denoted U [a1, . . . , an], and its
image under a morphism h can be denoted h(U) = U [h(a1), . . . , h(an)]. If
u ∈ Σ∗, then by the morphism a1 7→ u we mean the morphism that maps
a1 7→ u and ai 7→ ai when i = 2, . . . , n.

The following theorem states that the basic tool in solving equations,
namely the cancellation of the first variable, preserves the parameterizability
of solutions.

Theorem 5.1.1. Let U, V ∈ Ξ∗, x, y ∈ Ξ and x 6= y. Let h : Ξ∗ → Ξ∗

be the morphism x 7→ yx. If the equation xh(U) = h(V ) has a parametric
solution, then so does the equation xU ⇉ yV .

Proof. If the equation xh(U) = h(V ) has a parametric solution

{(hj , Rj) | 1 ≤ j ≤ m} ,

then the equation xU ⇉ yV has the parametric solution

{(hj ◦ h,Rj) | 1 ≤ j ≤ m} .

Next we make some remarks about parametric solutions to increase our
understanding of them.

A parametric solution was defined as a set {(hj , Rj) | 1 ≤ j ≤ m}. This
solution can be written less formally as

x = h1(x), y = h1(y), z = h1(z), R1 or

...

x = hm(x), y = hm(y), z = hm(z), Rm,

if the unknowns are x, y, z. Actually, only one pair (h,R) is needed. For
example, if we have a parametric solution

x = α1, y = β1, z = γ1 or x = α2, y = β2, z = γ2,

we can replace it with

x = αi
1α

j
2, y = βi

1β
j
2, z = γi

1γ
j
2, i + j = 1,
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where i and j are new parameters.
On the other hand, the linear Diophantine relations are not necessary

either. A parametric solution

x = α1, y = β1, z = γ1, R

can be replaced with a parametric solution of the form

x = α1, y = β1, z = γ1 or

...

x = αm, y = βm, z = γm.

This follows from the results in [17]. We will not give the proof here, but
present an example.

Example 5.1.2. Consider the periodic solutions of the equation xn = yz.
They are

x = ti, y = tj, z = tk, ni = j + k.

We can replace j with nj′ + b and k with nk′ + c, where 0 ≤ b, c < n. Then
i = j′ + k′ + (b + c)/n. Only those pairs (b, c) for which b + c is divisible by
n are possible. Thus we get a representation

x = tj
′+k′

, y = tnj′ , z = tnk′
or

x = tj
′+k′+1, y = tnj′+1, z = tnk′+n−1 or

x = tj
′+k′+1, y = tnj′+2, z = tnk′+n−2 or

...

x = tj
′+k′+1, y = tnj′+n−1, z = tnk′+1,

where the parameters j′, k′ can now have any nonnegative values.

The periodic solutions of an equation on three unknowns can be repre-
sented with just one morphism and without any Diophantine relations.

Theorem 5.1.3. The periodic solutions of an equation U = V have a rep-
resentation

x = tp, y = tq, z = tr,

where p, q, r are polynomials of numerical parameters

Proof. All periodic solutions of an equation U = V are of the form x =
ti, y = tj, z = tk, and the exponents i, j, k must satisfy the constraint

|U |xi + |U |yj + |U |zk = |V |xi + |V |yj + |V |zk.
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By permuting the unknowns we can assume that this can be written as
ai = bj + ck, where a, b, c are nonnegative integers and a > 0 (except for
some trivial cases). Let (bn, cn)Nn=1 be a sequence of all solutions (u, v) ∈
{0, . . . , a−1}2 of the congruence bu+cv ≡ 0 (mod a). For each pair (bn, cn),
we could define a corresponding morphism, and these would together form
a parametric representation. This was done in Example 5.1.2. However, we
can also replace the exponents i, j, k with the polynomials

p = bj0 + ck0 +

N∑

n=1

bbn + ccn

a
in,

q = aj0 +

N∑

n=1

bnin,

r = ak0 +
N∑

n=1

cnin,

where j0, k0, i1, . . . , in are new parameters, which can now have any values.
Thus the solutions can be represented with one parametric word for each
unknown. The parametric representation has at most quadratic length with
respect to the length of the equation.

Theorem 5.1.3 does not hold if instead of periodic solutions we con-
sider all solutions. Indeed, we will show that a parametric solution for the
equation xyxzyz = zxzyxy consists of at least three morphisms if linear
Diophantine relations are not allowed. The solutions of this equation were
determined in Lemma 2.4.8.

The number of occurrences of a letter a ∈ Σ in a parametric word after
giving values for the parameters can be viewed as a polynomial, where for
every i ∈ Λ there is a variable Xi and for every p ∈ ∆ and a ∈ Σ there is a
variable Xp,a. Formally, we define the polynomial |α|a as follows:

(i) if p ∈ ∆, then |(p)|a = Xp,a,

(ii) if α and β are parametric words, then |(αβ)|a = |α|a + |β|a,

(iii) if α is a parametric word and i ∈ Λ, then |(αi)|a = |α|aXi.

For example, |(piq)jp|a = Xp,aXiXj + Xq,aXj + Xp,a. If ϕ is a valuation,
then |ϕ(α)|a is the value taken by the polynomial |α|a, when Xi is given the
value ϕ(i) (for all i ∈ Λ) and Xp,a is given the value |ϕ(p)|a (for all p ∈ ∆).

Theorem 5.1.4. The equation xyxzyz = zxzyxy does not have a paramet-
ric solution of the form

x = α1, y = β1, z = γ1 or x = α2, y = β2, z = γ2.
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Proof. The following are examples of the solutions of the equation:

x = a, y = b, z = ε; x = a, y = b, z = ab; x = a, y = a, z = a. (5.1)

We will show that if α, β, γ are parametric words such that

x = ϕ(α), y = ϕ(β), z = ϕ(γ) (5.2)

is a solution of the equation for all valuations ϕ, then we can get at most
one of the three above-mentioned solutions from these parametric words.

Consider the three polynomials p1 = |γ|a, p2 = |αβ|a − |γ|a and p3 =
|α|a|β|b − |α|b|β|a. The values taken by them are

|z|a, |xy|a − |z|a, |x|a|y|b − |x|b|y|a, (5.3)

where (x, y, z) can be any solution of the equation xyxzyz = zxzyxy. If
z = ε, then the first value is zero, if xy = z, then the second value is zero,
and if x and y are powers of a common word, then the third value is zero.
For every solution one of these holds by Lemma (2.4.8), so the product of
the three polynomials p1p2p3 vanishes everywhere. Thus p1p2p3 is the zero
polynomial. But this means that one of the polynomials p1, p2, p3 must be
the zero polynomial. For the first solution in (5.1) only the first value in
(5.3) is zero, for the second solution only the second value is zero, and for the
third solution only the third value is zero. Thus only one of these solutions
can be obtained from (5.2).

5.2 Exponential Equations

Let α and β be parametric words. The pair (α, β) can be viewed as an
equation, referred to as an exponential equation. The height of this equation
is the height of αβ. The solutions of this equation are the functions f :
Λ → N0 that satisfy f(α) = f(β). If the numerical parameters are in order
i1, . . . , in, then we can talk of the solution (f(i1), . . . , f(in)) or of the solution
i1 = f(i1), . . . , in = f(in).

If we know some parametric words which give all solutions of an equation,
but which also give some extra solutions, then often the right solutions
can be picked by adding some constraints for the numerical parameters.
These constraints can be found by exponential equations, and the following
theorems prove that they are in our cases equivalent to linear Diophantine
relations.

The proofs in this section are connected to the method of Chapter 4. We
will transform words into polynomials when studying exponential equations.
Alphabet Ξ with k letters can be thought to be the set {1, . . . , k}. If w =
a0 . . . an−1 ∈ Σn, then we let

Pw = a0 + a1X
1 + · · · + an−1X

n−1
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like in Section 4.1.

Theorem 5.2.1. Let E : α = β be an exponential equation of height one.
There exists a linear Diophantine relation R such that a function f : Λ → N0

is a solution of E if and only if f ∈ R. The coefficients in R are of size
O(|αβ|).

Proof. Let

α = s0t
i1
1 s1 . . . timm sm, β = u0v

j1
1 u1 . . . vjn

n un,

where s0, . . . , sm, u0, . . . , un ∈ ∆∗, t1, . . . , tm, v1, . . . , vn ∈ ∆+ and i1, . . . , im,
j1, . . . , jn ∈ Λ. Function f is a solution if and only if Pf(α) = Pf(β). Now
Pf(α) is

Ps0 +
Pt1(X

|t1|f(i1) − 1)

X |t1| − 1
· X |s0|

+ · · · +
Ptm(X |tm|f(im) − 1)

X |tm| − 1
· X |s0|X |t1|f(i1)X |s1| . . . X |sm−1|

+ PsmX |s0|X |t1|f(i1)X |s1| . . . X |tm|f(im),

which can be rewritten as

Ps0 −
Pt1X

|s0|

X |t1| − 1

+
m−1∑

k=1

(
Ptk

X |tk | − 1
+ Psk

−
Ptk+1

X |sk|

X |tk+1| − 1

)
X |s0...sk−1|X |t

f(i1)
1 ...t

f(ik)

k
|

+

(
Ptm

X |tm| − 1
+ Psm

)
X |s0...sm−1|X |t

f(i1)
1 ...t

f(im)
m |

and Pf(β) is of the corresponding form. Thus the equation

(X |t1| − 1) . . . (X |tm| − 1)(X |v1| − 1) . . . (X |vn| − 1)Pf(α)

=(X |t1| − 1) . . . (X |tm| − 1)(X |v1| − 1) . . . (X |vn| − 1)Pf(β)

can be rewritten as

Xp1 + · · · + XpM = Xq1 + · · · + XqN , (5.4)

where every pk and qk is a linear polynomial with unknowns f(il), f(jl).
The coefficients in these polynomials are of size O(|αβ|). Equation (5.4) can
be satisfied only if M = N . Then it is equivalent to the formula

∨

π

(
(p1 = qπ(1)) ∧ · · · ∧ (pN = qπ(N))

)
,

where π runs over all permutations of N elements. Hence the claim follows.
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In some cases Theorem 5.2.1 can be generalized for exponential equations
of height two.

Theorem 5.2.2. Let Λ = {i, j1, . . . , jr} and let s0, . . . , sm, u0, . . . , un and
t be parametric words of height at most one, with no occurrences of the
parameters jk. Let α = s0t

jk1s1 . . . tjkm sm and β = u0t
jl1u1 . . . tjlnun. Now

there exists a linear Diophantine relation R such that a function f : Λ → N0

is a solution of the exponential equations E : α = β if and only if f ∈ R.
The coefficients in R are of size O(|αβ|).

Proof. Like in the proof of Theorem 5.2.1, the equation Pf(α) = Pf(β) can
be turned into the equation

Xp1 + · · · + XpM = Xq1 + · · · + XqN , (5.5)

where every pk and qk is of the form

r∑

k=1

ak(bf(i)f(jk) + cf(jk)) + df(i) + e

for some integers a1, . . . , ar, b, c, d, e. The coefficients in these polynomials
are of size O(|αβ|). Equation (5.5) can be satisfied only if M = N . Then it
is equivalent to the formula

∨

π

(
(p1 = qπ(1)) ∧ · · · ∧ (pN = qπ(N))

)
,

where π runs over all permutations of N elements. Consider now the equa-
tions pk = qπ(k). They are of the form

bf(i)

r∑

k=1

akf(jk) + c

r∑

k=1

akf(jk) + df(i) + e = 0

for some integers a1, . . . , ar, b, c, d, e. If b = 0, this is a linear equation. If
b 6= 0, then

f(i) ≤
∣∣∣c
b

∣∣∣+ |d| + |e| or

∣∣∣∣∣b
r∑

k=1

akf(jk)

∣∣∣∣∣ ≤
∣∣∣c
b

∣∣∣+ |d| + |e|,

because otherwise
∣∣∣∣∣bf(i)

r∑

k=1

akf(jk)

∣∣∣∣∣ >

∣∣∣∣∣c
r∑

k=1

akf(jk) + df(i) + e

∣∣∣∣∣ .

If f(i) or b
∑r

k=1 akf(jk) is fixed, the equation turns into a linear equation
or a pair of linear equations. Hence the claim follows.
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We must examine some exponential equations of height one more closely.

Theorem 5.2.3. Let Λ = {i}. Let E : s0t
is1 . . . tism = u0t

iu1 . . . tiun be
an exponential equation of height one, s0, . . . , sm, u0, . . . , un, t ∈ ∆∗ and
|s0 . . . smu0 . . . un| < S|t|. There exists a number T = O(S) such that f is a
solution of E for every f(i) ≥ T , or f is not a solution for any f(i) ≥ T .

Proof. Like in the proof of Theorem 5.2.1, we get the equation (5.4). The
polynomials pj , qj are of the form af(i) + b. On the other hand, they are
exponents of terms of products of X |sk|, Psk

, X |uk|, Puk
, X |t|, X |t|f(i), Pt.

Each of these polynomials can occur in the products at most once, except
X |t| and X |t|f(i), which can occur at most m + n times. Thus |t| divides
a and b ≤ 2|s0 . . . smtm+n|. The equation pj = qπ(j) can be written as
Af(i) = B, where A = 0 or |A| ≥ |t| and |B| ≤ 2|s0 . . . smu0 . . . untm+n|.
Now there exists the required number T such that the equations pj = qπ(j)

have no solutions f(i) ≥ T , unless the equations are trivial. This proves the
claim.

5.3 Basic Equations

From now on we only consider equations on three unknowns. The alphabet
of unknowns is Ξ = {x, y, z}. The left-hand side of an equation can be
assumed to begin with x. We can also assume that x occurs on the right-
hand side, but not as the first letter.

Periodic solutions and solutions where some unknown has the value ε
are called trivial. These are easy to parameterize by Theorems 2.3.1 and
2.3.2.

An equation is a basic equation if it is a trivial equation U = U , where
U ∈ Ξ∗, if it has only trivial solutions, or if it is of one of the following forms,
where a, b ≥ 1, c ≥ 2 and t ∈ {x, z}:

B1. xay · · · = ybx · · ·

B2. x2 · · · ⇉ yax · · ·

B3. xyt · · · ⇉ zxy · · ·

B4. xyt · · · ⇉ zyx · · ·

B5. xyz · · · = zxy · · ·

B6. xyz · · · = zyx · · ·

B7. xycz · · · = zycx · · ·

B8. xyt · · · ⇉ zaxy · · ·
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B9. xyxz · · · ⇉ zx2y · · ·

The parameterizability of basic equations is easy to prove with the help
of previous lemmas and theorems.

Lemma 5.3.1. Let S, T, U, V ∈ Ξ∗. Assume that the equation S = T
has a parametric solution {(hj , Rj) | j = 1, . . . ,m}, where ∆ = {p, q} and
Λ = {i1, . . . , ik}. Assume that the exponential equations hj(U) = hj(V )
are equivalent to linear Diophantine relations. Then the pair of equations
S = T,U = V has a parametric solution.

Proof. Let hj(U) = hj(V ) be equivalent to the linear Diophantine relation
R′

j. We show that the solutions of the equation have a parametric represen-
tation {

(hj , Rj ∩ R′
j) | j = 1, . . . ,m

}
∪ A,

where A is a parametric representation of the periodic solutions

If ϕ = h ◦ f is a valuation in Rj ∩R′
j , then ϕ ◦ hj is a solution of S = T

and f is a solution of hj(U) = hj(V ). Now ϕ◦hj is also a solution of U = V .

If g is a nonperiodic solution of the pair of equations S = T,U = V , then
g = ϕ ◦ hj for some number j and valuation ϕ = h ◦ f satisfying f ∈ Rj. It
needs to be shown that f is a solution of hj(U) = hj(V ). The morphism h is
a solution of the equation f(hj(U)) = f(hj(V )), which has two unknowns.
But h cannot be periodic, because g is not periodic. Thus f(hj(U)) and
f(hj(V )) must be the same word

Theorem 5.3.2. Every basic equation has a parametric solution. The solu-
tion is of length O(1) and the coefficients in the linear Diophantine relations
are of size O(n), where n is the length of the equation.

Proof. For equations U = U and for equations with only trivial solutions
the claim is clear. We prove it for equations B1 – B9. First we reduce
equations to other equations by Theorem 5.1.1. The equation B2 is reduced
by the substitution x 7→ yx to the equation xyx · · · = yax · · · , which is of
the form B1. The equations B3 and B4 are reduced by the substitution
x 7→ zx to the equations xyz · · · = zxy · · · and xyz · · · = yzx · · · , which are
of the form B5. The equation B8 is reduced by the substitution x 7→ zx to
the equation xyzA = zaxyB for some A,B ∈ Ξ∗. By Lemma 2.4.7, this is
equivalent to the equation xyzxyzA = zxyzaxyB, which is of the form B5.
Therefore only the cases B1, B5, B6, B7 and B9 have to be considered; if
we can prove the claims about the existence and size of parametric solutions
for these equations, then the claims hold for all basic equations.

Consider the equations B1, B5, B6, B7 and B9 as the equation U = V
of Lemma 5.3.1, and the equations xy = yx, xyz = zxy, xyz = zyx, xycz =
zycx and xyxz ⇉ zx2y as the equation S = T . For B1 this can be done by
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Lemma 2.4.7, otherwise by a length argument. By Lemmas 2.4.2 – 2.4.6,
the solutions of these equations are obtained from certain parametric words
over word parameters p, q and numerical parameters i, j, k. For equations
B1, B5 and B6, the exponential equation of Lemma 5.3.1 will be of height
one and Theorem 5.2.1 can be used. For B9 and B7, Theorem 5.2.2 can
be used. So the exponential equation is in all cases equivalent to a linear
Diophantine relation with coefficients of size O(n). The claim follows from
Lemma 5.3.1, because the parametric solutions of Lemmas 2.4.2 – 2.4.6 are
of bounded length.

5.4 Images and θ-Images

In this section we define images and θ-images of equations and prove some
results about these. If h is a solution of the equation xU ⇉ yV , then
h(y) ≤ h(x). This fact was already behind Theorem 5.1.1. This will be
generalized.

Let t1, . . . , tn ∈ {y, z} and V = t1 . . . tn. Let tn+1 = t1. If a morphism h
is a solution of the equation E : xU ⇉ V xW , then

h(x) = h(V kt1 . . . ti)u (5.6)

for some numbers k, i and word u satisfying k ≥ 0, 0 < i ≤ n and h(ti+1) �
u.

On the other hand, a morphism h satisfying (5.6) is a solution of E if
and only if uh(U) = h(ti+1 . . . tnt1 . . . ti)uh(W ). We can write h = g ◦ f ,
where f is the morphism x 7→ V kt1 . . . tix and g is the morphism for which
g(x) = u, g(y) = h(y) and g(z) = h(z). Now h is a solution of E if and only
if g is a solution of

xf(U) ⇇ f(ti+1 . . . tnt1 . . . ti)xf(W ). (5.7)

An image of an equation xU [x, y, z] ⇉ V [y, z]xW [x, y, z] under the mor-
phism x 7→ V kPx, where k ≥ 0, V = PQ and Q 6= ε, is

xU [V kPx, y, z] ⇇ QPxW [V kPx, y, z].

If V contains only one of y, z or if P = ε, the image is degenerated.
The m first images of an equation of length n are of length O(mn).

Images are needed in the most important reduction steps used in the proof
of parameterizability of equations with three unknowns. The solutions of an
equation are easily obtained from the solutions of its images, so it is enough
to consider them. There are infinitely many images, but a finite number is
enough if one of them is turned from a one-sided equation to an ordinary
equation.
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Equation E is reduced to the equations E1, . . . , En by an n-tuple of substi-
tutions if E is of the form xU [x, y, z] ⇉ t1 . . . tkxV [x, y, z], where 1 ≤ n ≤ k
and t1, . . . , tk ∈ {y, z}, equation Ei is

xU [t1 . . . tix, y, z] ⇇ ti+1 . . . tkt1 . . . tixV [t1 . . . tix, y, z],

when 1 ≤ i < n, and equation En is

xU [t1 . . . tnx, y, z] = tn+1 . . . tkt1 . . . tnxV [t1 . . . tnx, y, z].

By the above, Theorem 5.1.1 can be generalized.

Theorem 5.4.1. Let E be an equation of length n. If E is reduced to the
equations E1, . . . , Em by an m-tuple of substitutions, and if E1, . . . , Em have
parametric solutions of length at most c, then E has a parametric solution
of length O(mn)c.

Reductions with n-tuples of substitutions are not sufficient. Other ways
to restrict the considerations to a finite number of images are needed.

Equation
xU [x, y, z] ⇉ V [y, z]xW [x, y, z]

is of type I if both unknowns y, z occur in V . Equation

xybU [x, y, z] ⇉ zcxV [x, z]yW [x, y, z],

where b, c ≥ 1, is of type II if b > 1 or V 6= ε.

Theorem 5.4.2. The solutions of an equation of type I of length n can
be parameterized in terms of the solutions of O(n2) of its images of length
O(n3).

Proof. Consider the equation E : xU [x, y, z] ⇉ V [y, z]xW [x, y, z], where
both y and z occur in V , and its images

EP,i : xU [V iPx, y, z] ⇇ QPxW [V iPx, y, z], (5.8)

where i ≥ 0, V = PQ and Q 6= ε. We show that there exists a number T
such that if P and Q are fixed, then the equations (5.8) are equivalent for
all i ≥ T .

Let h be a solution of EP,i. Then Theorem 5.2.3 can be used for the
exponential equation

h(x)U [h(V )ih(Px), h(y), h(z)] = h(QPx)W [h(V )ih(Px), h(y), h(z)],

where i is considered to be unknown. The bound S in the theorem does
not depend on h and is of size O(n), because both y and z occur in V and
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h(x) ≤ h(y) or h(x) ≤ h(z). So there exists a number T = O(n) such
that h is a solution for all i ≥ T or for no i ≥ T . Thus the equations
EP,T , EP,T+1, EP,T+2, . . . are equivalent if P is fixed.

Now the images of this theorem can be taken to be EP,j, where P < V
and j ≤ T . The solutions of E are g ◦f ◦h′, where either h′ is the morphism
x 7→ V jPx, g runs over the solutions of the corresponding image EP,j, f
does nothing and j < T , or h′ is the morphism x 7→ V T+iPx, i is a numerical
parameter, g runs over the solutions of EP,T and f gives values for i. Because
T = O(n) and |V | = O(n), there are O(n2) of these images, and because
|V jPx| = O(n2), they are of length O(n3).

Like in the proof of Theorem 5.4.2, we will often use a variation of the
following reasoning: if the images of E are E1, E2, . . . , and if Em, Em+1, . . .
are equivalent, then the solutions of E can be parameterized in terms of the
solutions of E1, . . . , Em. It is also easy to see that if each of these images has
a parametric solution of length at most c, then E has a parametric solution
of length O(m2)c. This also holds for θ-images, which are defined later.

The next example shows that the claim in the proof of Theorem 5.4.2
about the existence of a number T does not hold for equations of type II.

Example 5.4.3. The images of the equation xy ⇉ zx2 are xy ⇇ zxzix.
Now x = a, y = ba(ab)Na, z = ab is a solution of an image if and only if
i = N . So all images have different solution sets.

Consider an equation of type II

xybA[x, y, z] ⇉ zcxB[x, z]yC[x, y, z], (5.9)

where b, c ≥ 1 and b > 1 or B 6= ε. Its images are degenerated and of the
form

xybA[zix, y, z] ⇇ zcxB[zix, z]yC[zix, y, z]. (5.10)

Theorem 5.4.2 holds for some of the equations (5.9).

Theorem 5.4.4. If B = zd, where d ≥ 1, then the solutions of (5.9) can
be parameterized in terms of the solutions of O(n2) of its images of length
O(n3), where n is the length of the equation.

Proof. Equation (5.10) is reduced by the mapping z 7→ xz to the equation

ybA[(xz)ix, y, xz] = (zx)c(xz)dyC[(xz)ix, y, xz]. (5.11)

Let h be its solution. Let D = h((zx)c(xz)d) and h(y) = DjY , where
Y < D. Then we get the equality

Y (DjY )b−1A[h((xz)ix),DjY, h(xz)]

=DY C[h((xz)ix),DjY, h(xz)].
(5.12)
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On the other hand, if (5.12) holds, then h is a solution of (5.11) and it
gives a solution of (5.10). It needs to be shown that there exists a bound
T = O(n2) not depending on h such that if (5.12) holds for some i ≥ T ,
then it holds for all i ≥ T . Then the images (5.10) with i ≤ T are sufficient,
like in the proof of Theorem 5.4.2.

If j < c + d + 1 = O(n) is fixed, then (5.12) can be considered to be an
exponential equation with unknown i, and Theorem 5.2.3 can be used. The
bound S = O(n2) not depending on h exists, because |D| = (d + c)|h(xz)|.

For the rest of the proof we consider the case j ≥ c + d + 1. Let t and
v be the primitive roots of h(xz) = ta1 and D = va2 . If these have equal
length, then t = v and h(xz) = h(zx), which leads to a periodic solution.
Assume that |t| 6= |v|. In (5.12), starting from the left, move the powers
of t and v as far to the left as possible by changing them to their suitable
conjugates, and then combine as much as possible from the right to these
powers. This may require replacing i and j with i′ = i − b1 and j′ = j − b2

for some b1, b2. By Theorem 2.3.4, powers of conjugates of h(xz) and D can
overlap for at most |h(xz)D| letters, so we can select b1, b2 ≤ c + d + 1, and
i′ and j′ can be used if i and j are large enough. This way (5.12) can be
written as

s0t
p1
1 s1 . . . tpM

M sM = u0v
q1
1 u1 . . . vqN

N uN , (5.13)

where s0, . . . , sM , u0, . . . , uN ∈ ∆∗, every tk and vk is either a conjugate of t
or a conjugate of v, and every pk and qk is a polynomial of first degree with
unknowns i′, j′. The coefficients in these polynomials cannot be negative.
Also the last letter of tk is different from the last letter of sk−1, and tk �
skt

a
k+1 for all a. The same holds for words uk and vk and for polynomials

qk. Because the words h(xz) and D consist of h(x) and h(z) and Y < D,
there exists a bound S = O(n2) such that

|s0 . . . sMu0 . . . uN (tv)2| < S|ta| and b < a1S (5.14)

when ai′ + b is in {p1, . . . , pM , q1, . . . , qN}. The same holds with v in place
of t, j′ in place of i′, and a2 in place of a1.

We prove by induction with respect to M+N that if (5.13) has a solution
f with f(i′), f(j′) ≥ S+2, then sk = uk, tk = vk and f(pk) = f(qk) for all k.
If M+N = 0, then the claim is clear (although the equation is of height zero).
If M = 0, N > 0, or the other way around, then the exponent occurring in
the equation can get only small values. Assume that M,N > 0. From (5.14)

it follows that |t
f(pk)
k | > |s0 . . . sMu0 . . . uN (tv)2| for all k, and similarly for

vk. It can be assumed that u0 ≤ s0, so v1 = BA and s0 = u0(BA)kB for

some A,B. Now |v
f(q1)
1 | ≥ |s0|+ |t21| and |t

f(p1)
1 | ≥ |(AB)2|. Thus the powers

of t1 and AB have a common prefix of length |t1AB| and, by Theorem
2.3.4, t1 = AB. Now t1 = v1, B = ε, k = 0 and s0 = u0. We prove that

f(p1) = f(q1). From f(p1) > f(q1) it would follow that v1 = t1 ≤ u1v
f(q2)
2
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(or v1 = t1 ≤ u1 if N = 1), which is a contradiction. The case f(p1) < f(q1)
is symmetric. It follows inductively that sk = uk, tk = vk and f(pk) = f(qk)
for all k.

Now it can be seen that pk − qk contains only one of i′ and j′, because
tk = vk, and the coefficient of i′ or j′ is divisible by a1 or a2. So if f(pk) =
f(qk) and f(i′), f(j′) ≥ S, then it must be pk = qk because of (5.14). The
claim follows.

Theorem 5.4.2 can be generalized by defining θ-images.
A sequence of equations E0, . . . , En is a chain of images if Ei is an

image of Ei−1 for all i, 1 ≤ i ≤ n. Then En is an image of order n of E0. If
every Ei is a degenerated image, then the chain is degenerated and En is a
degenerated image of order n. These chains are not related to the decreasing
chains of equations that were considered in the earlier chapters.

We define θ-images of equations of type I and II. For equations of type
I all images are θ-images. For equations of type II the degenerated images
of order 2 and nondegenerated images of order 3 are θ-images.

Lemma 5.4.5. The solutions h of equation (5.9) satisfying |h(y)| ≤ |h(z)|
can be parameterized in terms of the solutions of O(n) of its images of length
O(n2), where n is the length of the equation.

Proof. This is proved like Theorem 5.4.2. Let Ei be the equation (5.10) and
let h be its solution. Theorem 5.2.3 can be used for the exponential equation

h(xybA[zix, y, z]) = h(zcxB[zix, z]yC[zix, y, z]),

where i is considered to be the unknown. The bound S does not depend on
h and is of size O(n), because h(x), h(y) ≤ h(z). So there exists a number
T = O(n) such that either h is a solution for all i ≥ T or for no i ≥ T .
Thus the equations ET , ET+1, ET+2, . . . are equivalent. Like in the proof of
Theorem 5.4.2, the images Ej , where j ≤ T , are sufficient.

Lemma 5.4.6. The solutions h of equation (5.9) satisfying |h(y)| ≤ |h(z)|
can be parameterized in terms of the solutions of O(n17) of its θ-images of
length O(n18), where n is the length of the equation.

Proof. Let these solutions be called τ -solutions. Let Ei be the equation
(5.10). By Lemma 5.4.5, the τ -solutions can be parameterized in terms of
the τ -solutions of E0, . . . , ET for some T . Let Pi be the set of those τ -
solutions h of Ei for which |h(z)| ≥ |h(xy)|, and let Qi be the set of those
τ -solutions h of Ei for which |h(y)| ≤ |h(z)| ≤ |h(xy)|.

Let E′
i be the image of Ei under the morphism z 7→ xz, and let E′′

i be
the image of E′

i under the morphism y 7→ zy. From the length constraint
|h(y)| ≤ |h(z)| ≤ |h(xy)| it follows that the set Qi can be parameterized in
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terms of the solutions of E′′
i , which is a nondegenerated image of the third

order of (5.9).

Consider the set Pi. The equation (5.10) is of type I, so its solutions
can be parameterized in terms of the solutions of a finite number of its
images. Because of the condition |h(z)| ≥ |h(xy)| in the definition of Pi,
the image under the morphism z 7→ xz can be omitted. Let the set thus
obtained be Fi. The set Pi can be parameterized in terms of the solutions
of equations of Fi. Partition Fi into the sets Gi and Hi of degenerated and
nondegenerated images. The equations of Hi are of type I, so their solutions
can be parameterized in terms of the solutions of a finite number of their
images. These images are nondegenerated images of the third order of the
original equation (5.9). The equations of Gi are degenerated images of the
second order. So also Pi can be parameterized in terms of the solutions of a
finite number of θ-images of (5.9).

In this construction there are O(n) images of the first order of length
O(n2), O(n5) images of the second order of length O(n6), and O(n17) images
of the third order of length O(n18). The claim follows.

Lemma 5.4.7. Let A,B,C ∈ Ξ∗ and i, k, a, p, a1, . . . , an ≥ 0 and c, q > 0.
Assume that all letters x, y, z occur in A, y � A, 0 < q ≤ n and aq + c+2 ≤
k ≤ i − c − |A|. Let

D1[x, z] = (zx)c((xz)i+a1x) . . . ((xz)i+aq−1x)xz,

D2[x, z] = (xz)i−k+aqx((xz)i+aq+1x) . . . ((xz)i+anx)(xz)p.

Now the equations

y(D1B)aA[(xz)ix,D1B,xz] ⇇ zD2D1C[x, y, z]

y(D1B)aA[(xz)ix,D1B,xz] ⇇ D2D1C[x, y, z]

have only trivial solutions.

Proof. The first equation is reduced by the morphism z 7→ yz to the equation

(D1[x, yz]B′)aA[(xyz)ix,D1[x, yz]B′, xyz] = zD2[x, yz]D1[x, yz]C ′.

If a > 0, then the equation is of the form

(yzx)cx · · · = (zxy)i−k · · · .

Because c > 0 and i − k ≥ c + 1, this equation has only trivial solutions by
Corollary 2.3.7. If a = 0 and zmy ≤ A, m > 0, then the equation is of the
form

(xyz)my · · · = (zxy)i−k · · · .
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Because i− k ≥ m + 1, this equation has only trivial solutions by Corollary
2.3.7. If a = 0 and zmx ≤ A, m ≥ 0, then the equation is of the form

(xyz)m+i · · · = (zxy)i−k+aqzxxyz · · · ,

except if n = q and p = 0, when it is of the form

(xyz)m+i · · · = (zxy)i−k+aqzx(yzx)cxyz · · · .

Because i− k + aq > 0 and i > i− k + aq + c + 1, this equation has in both
cases only trivial solutions by Corollary 2.3.7.

The second equation is similar. It is reduced by the morphism x 7→ yx
to the equation

(D1[yx, z]B′)aA[(yxz)iyx,D1[yx, z]B′, yxz]

=x(zyx)i−k+aq((yxz)i+aq+1yx) . . . ((yxz)i+anyx)(yxz)pD1[yx, z]C ′.

If a > 0, then the equation is of the form

(zyx)cy · · · = (xzy)i−k · · · .

Because c > 0 and i − k ≥ c + 1, this equation has only trivial solutions by
Corollary 2.3.7. If a = 0 and zmy ≤ A, m > 0, then the equation is of the
form

(yxz)mz · · · = (xzy)i−k · · · .

Because i− k ≥ m + 1, this equation has only trivial solutions by Corollary
2.3.7. If a = 0 and zmx ≤ A, m ≥ 0, then the equation is of the form

(yxz)m+i · · · = (xzy)i−k+aqxyx · · · ,

except if n = q and p = 0, when it is of the form

(yxz)m+i · · · = (xzy)i−k+aqx(zyx)cyx · · · .

Because i− k + aq > 0 and i > i− k + aq + c + 1, this equation has in both
cases only trivial solutions by Corollary 2.3.7.

Lemma 5.4.8. If x occurs in B, then the nonperiodic solutions h of (5.9)
satisfying |h(y)| ≥ |h(z)|, and some periodic solutions, can be parameterized
in terms of the solutions of O(n5) of its θ-images of length O(n6), where n
is the length of the equation.

Proof. The images of (5.9) are the equations (5.10). Because of the condition
|h(y)| ≥ |h(z)|, it is enough to consider the image of this under the morphism
z 7→ xz:

ybA[(xz)ix, y, xz] ⇉ (zx)cB[(xz)ix, xz]yC[(xz)ix, y, xz]. (5.15)
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The length constraint is now |h(y)| ≥ |h(xz)|. Equation (5.15) is a nonde-
generated image of the second order of (5.9). Let D = (zx)cB[(xz)ix, xz].
Now the image of (5.15) under the morphism y 7→ DjD1y, where j ≥ 0,
D1 < D and DjD1 6= ε, is

y(DjD1y)b−1A[(xz)ix,DjD1y, xz]

⇇D2D1B[(xz)ix, xz]yC[(xz)ix,DjD1y, xz],
(5.16)

where D1D2 = D.

We can write D = (zx)c((xz)i+a1x) . . . ((xz)i+aN x)(xz)p, where N ≥ 1,
p ≥ 0 and a1, . . . , aN ≥ 0. Let M = max {al + c + 1 + |A| | 1 ≤ l ≤ N}. If
D1 ”cuts” the factor (xz)i in D, then

D1 = (zx)c((xz)i+a1x) . . . ((xz)i+aq−1x)(xz)k,

D2 = (xz)i−k+aqx((xz)i+aq+1x) . . . ((xz)i+aN x)(xz)p

or

D1 = (zx)c((xz)i+a1x) . . . ((xz)i+aq−1x)(xz)k−1x,

D2 = z(xz)i−k+aqx((xz)i+aq+1x) . . . ((xz)i+aN x)(xz)p,

where 0 < k ≤ i and 0 < q ≤ N . If M ≤ k ≤ i − M , then, by Lemma 5.4.7,
equation (5.16) has only trivial solutions.

All nonperiodic solutions h of (5.9) for which |h(y)| ≥ |h(z)| are obtained
from the solutions of (5.16). Divide the solutions of the original equation
into sets P and Q depending on whether they are obtained from (5.16) when
i ≤ 2M or when i ≥ 2M . It needs to be shown that these sets, and some
periodic solutions, can be parameterized in terms of the solutions of a finite
number of equations (5.16).

Let U ⇇ V be the equation (5.16) and let h be its solution. If i ≤ 2M
is fixed, then h(U) = h(V ) can be viewed as an exponential equation with j
as the unknown. We use Theorem 5.2.3. It gives a T = O(n2) such that h
is a solution for all j ≥ T or for no j ≥ T . It can be assumed that the same
T is valid for all i ≤ 2M . Like in the proof of Theorem 5.4.2, the set P ,
and some periodic solutions, can be parameterized in terms of the equations
(5.16) with i ≤ 2M and j ≤ T . There are O(n3) of those.

Consider the set Q. We can write i = 2M + m. Replace (xz)i with
(xz)M (xz)m(xz)M in (5.16). Now D1 can no longer ”cut” (xz)m if we are
interested only in equations with nonperiodic solutions. So there are only
O(n2) possibilities for D1. Fix D1 and a solution h. Now h(U) = h(V ) can
be viewed as an exponential equation with j and m as the unknowns. Fix
m so that Theorem 5.2.3 can be used. There exists a bound L = O(n) not
depending on m such that either h is a solution for all j ≥ L or for no j ≥ L.
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Next, fix j and view h(U) = h(V ) as an exponential equation with m as
the unknown. Now, by Theorem 5.2.3, there exists a bound Nj = O(nj)
such that either h is a solution for all m ≥ Nj or for no m ≥ Nj . The
bound Nj can be assumed to be increasing with respect to j. By combining
these considerations it can be seen that either h is a solution for all j ≥ L,
m ≥ NL or for no j ≥ L, m ≥ NL. The set Q, and some periodic solutions,
can be parameterized in terms of the equations (5.16) with i ≤ 2M +NL and
j ≤ L. There are O(n3) of those for every D1. This proves the theorem.

Lemma 5.4.9. If x occurs in B, then the nonperiodic solutions of (5.9),
and some periodic solutions, can be parameterized in terms of the solutions
of O(n17) of its θ-images of length O(n18), where n is the length of the
equation.

Proof. The required θ-images are obtained by combining the sets of Lemmas
5.4.6 and 5.4.8.

Lemma 5.4.10. If B = zd, where d ≥ 1, then the solutions of (5.9) can be
parameterized in terms of the solutions of O(n26) of its θ-images of length
O(n27), where n is the length of the equation.

Proof. All images of the equation are degenerate; O(n2) of these of length
O(n3) can be chosen by Theorem 5.4.4. These images are of type I, so O(n6)
of their images of length O(n9) can be chosen by Theorem 5.4.2. Of these
images of the second order, the nondegenerated images are of type I, so
O(n18) of their images of length O(n27) can be chosen. These nondegener-
ated images of the third order with the degenerated images of the second
order give the set of required θ-images.

We define a complete set of θ-images of an equation of type I or II. For
equations of type I it is the set of Theorem 5.4.2. For equations of the form
(5.9) it is the set of Lemma 5.4.6 if B = ε, the set of Lemma 5.4.9 if x
occurs in B, and the set of Lemma 5.4.10 if B = zd, d ≥ 1. The next
theorem follows immediately from this definition.

Theorem 5.4.11. Every equation of type I or II of length n has a complete
set of θ-images consisting of O(n26) equations of length O(n27).

We assume that every complete set of θ-images satisfies the conditions
of Theorem 5.4.11.

Theorem 5.4.12. Let E be a word equation of length n. If {E1, . . . , Em}
is a complete set of θ-images of E and every Ei has a parametric solution
of length at most c, then E has a parametric solution of length O(mn26)c.
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Proof. For equations of type I this follows from Theorem 5.4.2. Consider the
type II equation (5.9). If B 6= ε, then the claim follows from Lemmas 5.4.9
and 5.4.10. Assume that B = ε. By Lemma 5.4.6, it suffices to show that
those solutions h of (5.9) for which |h(y)| ≥ |h(z)| can be parameterized.
Let h be such a solution. Then h(x) = h(z)mu for some m ≥ 1 and u ≤ h(z),
h(z) = uv for some v and y = vuw for some w. Now h = g ◦ f , where f and
g are morphisms, f(x) = (xz)mx, f(y) = zxy, f(z) = xz and g is a solution
of

yzx · · · = (zx)cy · · · . (5.17)

On the other hand, all such morphisms h are solutions of (5.9). By Lemma
2.4.7, g is also a solutions of yzx = zxy. Now, by Lemmas 2.4.3 and 5.3.1,
the solutions g of (5.17) can be parameterized. This gives a parametric
representation for the required solutions h if the exponent m in the morphism
f is considered to be a numerical parameter.

5.5 Neighborhoods and Trees

The proof of the parameterizability of equations with three unknowns con-
sists mainly of reducing equations to other equations. This forms a tree-like
structure. The intention is to make all leaf equations in this tree to be ba-
sic equations. The possible reduction steps are given in the definition of a
neighborhood, which is preceded by two lemmas.

Lemma 5.5.1. Let u, v,w ∈ Σ∗, 0 < |w| ≤ |u| and c ≥ 1. If

wuc+1v · · · = uc+1vu · · · or w(uv)cu2 · · · = (uv)cu2 · · · ,

then uv = vu.

Proof. Let u = wt. From wuc+1v · · · = uc+1vu · · · it follows that

(wt)c+1v · · · = t(wt)cvwt . . . and (wt)c+1v = t(wt)cvw.

From w(uv)cu2 · · · = (uv)cu2 · · · it follows that

(wtv)cwtwt · · · = tv(wtv)c−1wtwt . . . and (wtv)cwt = tv(wtv)c−1wtw.

In both cases the beginnings and ends of the last equation give wt = tw and
wtv = tvw. So ρ(w) = ρ(t) = ρ(tv) = ρ(v) = ρ(u).

Lemma 5.5.2. Let E0 be the equation xyazyps . . . ⇉ zybxyqt . . . , where
s, t ∈ {x, z} and a+p 6= b+ q. Let k be an even number such that 2(k−4)/2 ≥
1 + |p − q|. Let E0, . . . , Ek be a degenerated chain of images and let Ek be
xP ⇉ zQ. Now the solutions of Ek satisfying y 6= 1 are also solutions of
the equation xyazyb

⇉ zybxya.
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Proof. Assume that Ei+1 is the image of Ei under the morphism fi : x 7→
(zyb)cix when i is even, and under the morphism fi : z 7→ (xya)ciz when i
is odd. Because f0(x) and f0(z) and thus f0(s) and f0(t) begin with z, the
equation Ek is of the form

xyazypr · · · ⇉ zybxyqr · · · , (5.18)

where

r = (fk ◦ · · · ◦ f1)(z) = (fk ◦ · · · ◦ f4)((((xya)c3zyb)c2xya)c1(xya)c3).

Let Fm = fm ◦ · · · ◦ f4. The words xya and zyb occur as factors of F4(xya)
at least once, and if they occur as factors of Fm(xya) at least 2(m−4)/2

times, they occur as factors of Fm+2(xya) at least 2(m−2)/2 times. Thus, by
induction, they occur as factors of Fk(xya) at least 2(k−4)/2 times. If h is a
solution of Ek, then

||h(xyazyp)| − |h(zybxyq)|| ≤ |a + p − b − q||h(y)|

≤(a + b)|h(y)| + |p − q||h(y)| ≤ (1 + |p − q|)|h(xyazyb)|

≤2(k−4)/2|h(xyazyb)| ≤ |h(Fk(xya))|.

Thus, by (5.18),

w((uc3v)c2u)c1uc3 · · · = ((uc3v)c2u)c1uc3 · · · ,

where u = h(Fk(xya)), v = h(Fk(zyb)) and |w| ≤ |u|. If w = ε, then
h(xyazyp) = h(zybxyq), which is not possible by the assumptions h(y) 6= ε
and a + p 6= b + q. Thus it follows from Lemma 5.5.1 that uv = vu. It can
be seen that u, v ∈ {h(xya), h(zyb)}∗, u ends with h(xya) and v ends with
h(zyb). This means that h(xya) and h(zyb) satisfy a nontrivial relation. It
follows that they commute, that is h(xyazyb) = h(zybxya).

The equations E1, . . . , En form a neighborhood of an equation E if one
of the following conditions holds:

N1. E1, . . . , En form a complete set of θ-images of E,

N2. E reduces to E1, . . . , En with an n-tuple of substitutions,

N3. E is the equation U = V , U and V begin with different letters, n = 2,
and E1 and E2 are equations U ⇉ V and V ⇉ U ,

N4. n = 1 and E is the equation U = V and E1 is the equation UR = V R,

N5. E is the equation SU = TV , |S|t = |T |t for all t ∈ Ξ, n = 1 and E1 is
the equation US = V T ,
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N6. n = 1 and E1 is E reduced from the left or multiplied from the right,

N7. n = 1 and, with the assumptions of Lemma 5.5.2, E is the equation
xP ⇉ zQ and E1 the equation xyazybxP ⇉ zybxyazQ.

Rules N1 and N2 will be the most important ones. Rule N3 makes
it possible to consider one-sided equations. Because of rule N6, it can be
assumed that equations are reduced from the left and continue sufficiently
far to the right. The other rules are used in some special cases. The next
theorem justifies the definition of a neighborhood.

Theorem 5.5.3. Let E be a word equation of length n and let E1, . . . , Em

be its neighborhood. If each Ei has a parametric solution of length at most
c, then E has a parametric solution of length O(mn26)c.

Compared to the parametric solutions of the equations Ei, the parametric
words in the parametric solution of E contain O(1) new numerical param-
eters, the height of the parametric words can increase by O(1), and the
coefficients of the linear Diophantine relations are of the same size.

Proof. For N1 this follows from Theorem 5.4.12, for N2 from Theorem 5.4.1
and for N7 from Lemma 5.5.2. The other cases are clear.

The second paragraph can be deduced by examining the rules in the defi-
nition of a neighborhood and, most importantly, the definition of a complete
set of θ-images.

Directed acyclic graph whose vertices are equations is a tree of E if the
following conditions hold:

(i) only vertex with no incoming edges is E,

(ii) all other vertices have exactly one incoming edge,

(iii) if there are edges from E0 to exactly E1, . . . , En, then these equations
form a neighborhood of E0.

Theorem 5.5.4. Let E be a word equation of length n. If E has a tree of
height k, then all equations in the tree are of length O(n)27

k
. If each leaf

equation in this tree has a parametric solution of length at most c, then E
has a parametric solution of length O(n)52·27

k

c.

If the leaf equations are basic equations, then the parametric words in the
parametric solution of E contain O(k) numerical parameters, their height
is O(k), and the coefficients of the linear Diophantine relations are of size

O(n)27
k

.

Proof. In the case N1 the first claim follows directly from Theorem 5.4.11,
and for the other cases the bound O(n)27

k

is more than enough. Now,
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by Theorem 5.5.3, there exists a constant a such that E has a parametric
solution of length

a(an)52 · a((an)27)52 · a((an)27
2
)52 · · · · · a((an)27

k−1
)52 · c

<ak(an)52·27
k

c = O(n)52·27
k

c.

The second paragraph follows from the second paragraph of Theorem
5.5.3 and from Theorem 5.3.2.

A tree in which all leaves are basic equations is a basic tree.
If every θ-image of an equation of type I or II has a basic tree, then the

equation has a basic tree, because it has a complete set of θ-images. The
rule N1 is used in this way instead of explicitly selecting some complete set
of θ-images.

The main theorem is proved by a sequence of lemmas. The lemmas are
proved by using the rules of the definition of a neighborhood in various ways.

Lemma 5.5.5. The equation xyz2A[x, y, z] = yz2xB[x, y, z] has a basic
tree.

Proof. With N5 we get the equation Axyz2 = Byz2x, and then with N4
the equation z2yxAR = xz2yBR. With N3 we get z2yxAR

⇉ xz2yBR and
z2yxAR

⇇ xz2yBR. The former is basic of the form B2. The latter is
reduced by the pair of substitutions x 7→ zx, x 7→ z2x to the equations
zyzx · · · ⇉ xz2y · · · and yz2x · · · = xz2y · · · . These are basic of the form
B9 or B7 and we get a basic tree.

Lemma 5.5.6. Every nondegenerated θ-image of the equation

xyztA[x, y, z] ⇉ zx2yB[x, y, z],

where t 6= z, has a basic tree.

Proof. The equation is of type II. Its nondegenerated images of the second
order are

yxzg(h(tA)) ⇉ zx((xy)jxz)ixyg(h(B)), (5.19)

where h is the morphism x 7→ zix and g is the morphism z 7→ (xy)jxz. The
nondegenerated θ-images are the images of (5.19). We consider the cases
j = 0 and j > 0.

First, let j = 0. The images of (5.19) are

yxzC[(xz)ix,DkD1y, xz] ⇇ D2D1yB[(xz)ix,DkD1y, xz], (5.20)

where C = tA, D = D1D2 = zx(xz)ix, D 6= D1 and DkD1 6= ε. If D2D1

begins with one of x2, xzx, zxz, then (5.20) is a basic equation. Otherwise
D2D1 begins with zx2, D1 = 1 and k > 0. Then (5.20) is

yxzC[(xz)ix,Dky, xz] ⇇ zx(xz)ixyB[(xz)ix,Dky, xz].

66



This is reduced by the substitution z 7→ yz to the equation

xyzC[(xyz)ix,Eky, xyz] = zx(xyz)ixyB[(xyz)ix,Eky, xyz],

where E = yzx(xyz)ix. This is equivalent to one of the following pairs of
equations:

(a) xyzx = zxxy and y · · · = z · · · , if t = x,

(b) xyzyzxx = zxxyzxy and y · · · = z · · · , if t = y and i > 1,

(c) xyzyzxx = zxxyzxy and y · · · = x · · · , if t = y, i = 1 and y � B,

(d) xyzyzxx = zxxyzxy and (yzx)y · · · = (yzx)x · · · , if t = y, i = 1 and
y ≤ B.

By Corollary 2.3.7, there are only trivial solutions in all cases.
Next, let j > 0. If t = x, then (5.19) is

yxz((xy)jxz)ixg(h(A)) ⇉ zx((xy)jxz)ixyg(h(B)).

This is equivalent to the pair of equations yxzx ⇉ zxxy, y · · · = x · · · and
has only trivial solutions by Corollary 2.3.7. If t = y, then (5.19) is

yxzy · · · ⇉ zxxy(xy)j−1xzxy · · · .

Every image of this equation is of one of the following forms:

yx · · · ⇇ x2 · · · , yxz · · · ⇇ xzx · · · , yxzzx2s · · · ⇇ zx2yxzx · · · ,

where s 6= x. The first two equations are basic of the form B2 and B3.
The third equation is equivalent to the pair of equations yxzzx2

⇇ zx2yxz,
s · · · = x · · · and has only trivial solutions by Corollary 2.3.7.

5.6 Supporting Equations

We define supporting equations and prove as an intermediate result that
they have basic trees.

Let 1 ≤ a, b ≤ 2, d ≥ 1 and t 6= y. A supporting equation is an equation
of the form

xaybt · · · ⇉ zyx · · · or xaybt · · · ⇉ zxy · · · , (5.21)

or of the form
xaybt · · · ⇉ z(yz)dx · · · . (5.22)

A tree whose leaves are basic equations, supporting equations of the form
(5.21) or equations x2yt · · · ⇉ zyzxy · · · , where t 6= y, is a supporting tree.
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Lemma 5.6.1. Let E0, . . . , E3 be a chain of images of the equation

E0 : xyatA[x, y, z] ⇉ zcxB[x, z]yC[x, y, z],

where a, c ≥ 1, A,C 6= ε and t 6= y. Assume first that E2 is a degenerated
image. Now

1. E2 is of the form xyaz · · · ⇉ zx · · · ;

2. if a = 2, c = 1, B = ε and y � C, then E2 is of the form xy2z · · · ⇉

zxyx · · · ;

3. if a = 2, c = 1 and B = x, then E2 is of the form xy2z · · · ⇉ zx2y · · · ;

4. if a = 1, then E2 is basic equation B3 or of the form xyzs · · · ⇉

zx2y · · · , where s 6= z.

Assume then that E2 is a nondegenerated image. Now

1. E3 is a supporting equation;

2. if a = 2, c = 1, B = ε and y � C, then E3 is a basic equation or of
the form yxzy · · · ⇉ zxzy · · · ;

3. if a = 2, c = 1 and B = x, then E3 is a supporting equation of the
form (5.21) or an equation of the form x2ys · · · ⇉ zyzxy · · · , where
s 6= y;

4. if a = 1, then E3 is a supporting equation of the form (5.21).

Proof. The equation E1 is of the form

xyazA1[x, y, z] ⇇ zcxB[zix, z]yC[zix, y, z],

where i > 0 and A1 6= ε. Its image E2 is of the form

D2D1zA2[x, y, z] ⇉ zh(zc−1xB[zix, z]yC[zix, y, z]),

where h is the morphism z 7→ (xya)jD1z, j ≥ 0, D1 < xya, (xya)jD1 6= ε,
D1D2 = xya and z � A2 6= ε.

The equation E2 is a degenerated image if and only if D1 = ε. Then the
first four claims are correct.

If D1 6= ε, then E2 is of the form

ya−bxybz · · · ⇉ B1[x, z]y · · · ,

where 0 ≤ b < a, B1 starts with z and neither z2 nor x3 is a factor of B1.
Now E3 is a supporting equation.
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If D1 6= ε, a = 2, c = 1, B = ε and y � C, then E2 is of the form

y2−bxybz · · · ⇉ zxyx · · ·

and E3 is a basic equation of the form B3 or B4 or an equation of the
form yzyx · · · ⇇ xzyx · · · .

If D1 6= ε, a = 2, c = 1 and B = x, then E2 is of the form

y2−bxybz · · · ⇉ zx(xz)ixy · · ·

and E3 is a supporting equation of the form (5.21) or an equation of the
form yzyxz · · · ⇇ x2zs · · · , where s 6= z.

If D1 6= ε and a = 1, then E2 is of the form

yxz · · · ⇉ B1[x, z]y · · ·

and E3 is a supporting equation of the form (5.21).

Lemma 5.6.2. Let s, t 6= y. Every nondegenerated θ-image of the equation
xy2s · · · ⇉ zxyt · · · has a basic tree. Every nondegenerated θ-image of the
equation xy2z · · · ⇉ zx2y · · · has a supporting tree.

Proof. For the latter equation this follows from 3 of Lemma 5.6.1. For the
former it follows from 2 of Lemma 5.6.1, because the equation yxzy · · · ⇉

zxzy · · · is reduced by the substitution y 7→ zy to the equation of Lemma
5.5.5.

Lemma 5.6.3. Let s 6= x and t 6= y. Consider the equations

(a) xy2z · · · ⇉ zx2y · · · ,

(b) xyzs · · · ⇉ zx2y · · · ,

(c) xy2z · · · ⇉ zxyt · · · ,

(d) xyzt · · · ⇉ zy2x · · · ,

(e) xyz · · · ⇉ zy2x · · · .

the first has a supporting tree and the others have basic trees.

Proof. Let E0 be one of (a)–(d). It can be written in the form xyazypu · · · ⇉

zybxyqv · · · , where u, v 6= y. Here always a + p 6= b + q. Let

l ≥ 4 + 2 log2(1 + |p − q|)

be even. Form a complete set of θ-images for E0, a complete set of θ-images
for each of these, and so on l times. These θ-images form chains E0, . . . , El.
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We show that each chain has an equation with the required tree. This proves
the lemma.

First we consider chains of degenerated θ-images. There is a correspond-
ing degenerated chain of ordinary images. Now, by N7, the equation El can
be replaced by one of the following:

(a’) xy2z · · · ⇉ zxy2 · · ·

(b’) xyz · · · ⇉ zxy · · ·

(c’) xy2z · · · ⇉ zxy2 · · ·

(d’) xyzy · · · ⇉ zy2x · · · .

Equation (b’) is basic of the form B3. Equations (a’) and (c’) are reduced
by the substitution x 7→ zx to equations of Lemma 5.5.5. Equation (d’)
is reduced to the equation xyzyP = y2zxQ, which can be transformed to
yzyx · · · = xzy2 · · · by N5 and N4. This has a basic tree by Lemma 5.5.5.

Then we consider nondegenerated chains. We assume that the part
E0, . . . , Ej−1 of the chain is degenerated and that Ej is a nondegenerated
θ-image of Ej−1. If E0 is of the form (a)–(c), then Ej−1 is of the same form
and Ej has the required tree by Lemma 5.6.2 or Lemma 5.5.6. If E0 is of
the form (d), then all of E0, . . . , Ej−1 are of type I. Let 0 ≤ i < j. If i is
even, then Ei is of the form xyz · · · ⇉ zy2x · · · . If i is odd, then Ei is of the
form zy2x · · · ⇉ xyz · · · . Assume first that j is even. Now Ej is of the form
yxzr · · · ⇉ zy2x · · · , where r 6= z. This is the equation (b). Assume then
that j is odd. Now Ej is of the form y2 · · · ⇉ xy · · · or yzy · · · ⇉ xyz · · · .
These are basic of the form B2 and B3.

The lemma has been proved for equations (a)–(d). The equation (e) is
of the form (d) or (d’), so it has a basic tree.

Lemma 5.6.4. Supporting equations of the form (5.21) have basic trees.

Proof. First, consider the equation xaybt · · · ⇉ zyx · · · , where 1 ≤ a, b ≤ 2
and t 6= y. If a = b = 1, then this is basic of the form B4. If a = 1 and b = 2,
then this is of type I and its images are of the form zyx · · · ⇉ xy2z · · · or
yzxs · · · ⇉ xy2z · · · , where s 6= x. These have basic trees by Lemma 5.6.3.
Assume that a = 2. The equation is reduced by the substitutions x 7→ zx,
x 7→ zyx to the equations xzxy · · · ⇇ yzxs · · · and xzy · · · = zyx · · · , where
s 6= x. The latter is basic of the form B5. If in the former s = y, then it
is reduced by the substitution y 7→ xy to the equation of Lemma 5.5.5. If
s = z, then the images of the equation are of the form yzxz · · · ⇇ Dy, where
D is a conjugate of xzx. If D = xzx, then this image is basic of the form
B4. If D = zx2, then it is the equation (c) of Lemma 5.6.3. If D = x2z,
then it is reduced by the pair of substitutions x 7→ yx and x 7→ yzx to the

70



equations zyxz · · · ⇉ xyxzy · · · and yzxz · · · = xyzxzy · · · . The latter is
basic of the form B5 and the former is reduced by the substitution z 7→ xz
to the equation zyx2z · · · = yx2zy · · · , which has a basic tree by Lemma
5.5.5.

Second, consider the equation xaybt · · · ⇉ zxy · · · , where 1 ≤ a, b ≤ 2
and t 6= y. If a = 2 or a = b = 1, then this is basic of the form B2 or B3.
Assume that a = 1 and b = 2. If the fourth letter on the right is y, then the
equation is reduced by the substitution x 7→ zx to the equation of Lemma
5.5.5. Otherwise, the θ-images of the equation are, by 2 of Lemma 5.6.1,
basic equations or of the form xy2z · · · ⇉ zxyx · · · or yxzy · · · ⇉ zxzy · · · .
The former has a basic tree by Lemma 5.6.3, the latter is reduced by the
substitution y 7→ zy to the equation of Lemma 5.5.5.

Lemma 5.6.5. The equation x2yt · · · ⇉ zyzxy · · · , where t 6= y, has a basic
tree.

Proof. The images of this equation have basic trees by Lemma 5.6.4, except
for the image under the morphism x 7→ zx:

xzxyz · · · ⇇ yz2xy · · · .

This is reduced by the substitution y 7→ xy to the equation zx2yz · · · =
yz2x2 · · · . Consider the corresponding one-sided equations.

The images of the equation

zx2yz · · · ⇉ yz2x2 · · · (5.23)

are of the form zx2yyiz · · · ⇇ yzyizx2 · · · , and the images of this under the
morphisms y 7→ zy, y 7→ zxy, y 7→ zx2y and under other morphisms are

x2(zy)i+1 · · · ⇉ yz(zy)izx2 · · · , (5.24)

xzx · · · ⇉ yz2x · · · , (5.25)

zx2yzx · · · ⇉ yz2x2y · · · , (5.26)

Dyzx · · · ⇉ yz2x2z · · · , (5.27)

where D is a conjugate of zx2. The last two can be split into pairs of
equations zx2yz ⇉ yz2x2, x · · · = y · · · and Dyz ⇉ yz2x2, x · · · = z · · · .
These have only trivial solutions by Corollary 2.3.7. Consider the first two
equations. They are nondegenerated images, so their images are θ-images of
(5.23). These are equations of Lemma 5.6.4, except for the image of (5.24)
under the morphism x 7→ yx:

xyx(zy)i+1 · · · ⇇ z2(yz)i(yx)2 · · · .
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All images of this are again equations of Lemma 5.6.4, except for the image
under the morphism z 7→ xz:

yx(xzy)i+1 · · · ⇉ zxz(yxz)i(yx)2 · · · .

This is reduced to the equation

yx(xz2y)i+1 · · · = xz(zyxz)i(zyx)2 · · · ,

which can be split into the pair of equations yx2z2 = xz2yx, y · · · = z · · · ,
which has only trivial solutions by Corollary 2.3.7. So (5.23) has a basic
tree.

The images of the equation zx2yz · · · ⇇ yz2x2 · · · are of the following
forms:

x2zyz · · · ⇉ yz2x2 · · · , (5.28)

xzxyz · · · ⇉ yz2x2 · · · , (5.29)

zx2yz · · · ⇉ yz2x2 · · · . (5.30)

The images of (5.29) are equations of Lemma 5.6.4. The equation (5.30)
is of the form (5.23). The images of (5.28) are equations of Lemma 5.6.4,
except for the image under the morphism x 7→ yx:

xyxzyz · · · ⇇ z2(yx)2 · · · .

All images of this are again equations of Lemma 5.6.4, except for the image
under the morphism z 7→ xz:

yx2zyxz · · · ⇉ zxz(yx)2 · · · .

This is reduced to the equation

yx2z2yxz · · · = xz(zyx)2 · · · ,

which can be split into the pair of equations yx2z2 = xz2yx, y · · · = z · · · ,
which has only trivial solutions by Corollary 2.3.7.

Lemmas 5.6.4 and 5.6.5 prove that if an equation has a supporting tree,
then it has a basic tree.

Theorem 5.6.6. Every supporting equation has a basic tree.

Proof. By Lemma 5.6.4, it is enough to consider equations (5.22).

If a = b = 1, then the equation is xyt · · · ⇉ z(yz)dx · · · . Every image of
this equation has a basic tree by Lemma 5.6.4.
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If a = 1 and b = 2, then the equation is xy2t · · · ⇉ z(yz)dx · · · . Its
images are of the forms

xy2z · · · ⇇ zyz · · · , (5.31)

xy2z · · · ⇇ yzy · · · , (5.32)

xy2z · · · ⇇ yz2s · · · , (5.33)

xy2z · · · ⇇ z2yt · · · , (5.34)

where s 6= z, t 6= y. All images of (5.31) are of the form (5.21). All θ-images
of (5.32) are, by 4 of Lemma 5.6.1, basic equations, supporting equations
(5.21), or equations (b) of Lemma 5.6.3. All θ-images of (5.32) are, by 3 of
Lemma 5.6.1, equations of Lemmas 5.6.3, 5.6.4 or 5.6.5. All images of (5.34)
are supporting equations (5.21), except for the image under the morphism
z 7→ xz, which is the equation of Lemma 5.6.5.

If a = 2, then the equation is x2ybt · · · ⇉ z(yz)dx · · · . Its images are
supporting equations (5.21), except for the image under the morphism x 7→
zx:

xzxy · · · ⇉ (yz)dzx · · · .

If d ≥ 1, then the images of this equation are supporting equations (5.21).
If d = 1, then this is the equation (5.22) with a = 1 and b = 2.

5.7 Main Theorem

Now we can start generalizing Theorem 5.6.6 and finally prove the main
results of this chapter.

Lemma 5.7.1. The equation xyazyps · · · ⇉ zybxyqt · · · , where a > 0, a +
p = b + q and s, t 6= y, has a basic tree.

Proof. If a = 1 and b = 0, then the equation is basic of the form B8.
Consider other cases. The equation is reduced by the substitutions x 7→ zycx
(c = 0, . . . , b) to the equations

xyaz · · · ⇇ yb−czycx · · · (c = 0, . . . , b − 1), (5.35)

xyazypsP = zybxyqtQ. (5.36)

When b− c > 1, (5.35) is basic of the form B2. When b− c = 1, its θ-images
have a basic tree by 4 of Lemma 5.6.1 and by Lemmas 5.6.3 and 5.6.4.

If a = b, then (5.36) is basic of the form B6 or B7. Assume that a < b
(the case a > b is similar). By using N5 and N4 we get the equation
ydzyax · · · = xybz · · · , where d = b − a ≥ 1. Split this into one-sided
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equations

ydzyax · · · ⇉ xybz · · · , (5.37)

ydzyax · · · ⇇ xybz · · · . (5.38)

If d > 1, then (5.37) is basic of the form B2. If d = 1, then its θ-images
have a basic tree by 4 of Lemma 5.6.1 and by Lemmas 5.6.3 and 5.6.4.
Equation (5.38) is reduced by the substitutions x 7→ ycx (c = 1, . . . , d) to
the equations

yd−czya+cx · · · ⇉ xybz · · · and zya+dx · · · = xybz · · · .

Latter is basic of the form B6 or B7, former is of the form (5.37).

Lemma 5.7.2. The equation E0 : xyaz · · · ⇉ zybx · · · , where a > 0, has a
basic tree.

Proof. The equation can be written in the form xyazypu · · · ⇉ zybxyqv · · · ,
where u, v 6= y. If a + p = b + q, then the claim follows from Lemma 5.7.1.
Assume that a + p 6= b + q. Let l ≥ 4 + 2 log2(1 + |p − q|) be even. Like
in Lemma 5.6.3, form a complete set of θ-images of E0, a complete set of
θ-images of these, and so on l times. These θ-images form chains E0, . . . , El.
We show that each chain has an equation with a basic tree; this proves the
claim.

First we consider chains of degenerated θ-images. There is a correspond-
ing chain of ordinary images and we can use the rule N7. The equation El

is replaced by the equation xyazybxP ⇉ zybxyazQ, which has a basic tree
by Lemma 5.7.1.

Then we consider nondegenerated chains. We assume that the part
E0, . . . , Ej−1 of the chain is degenerated and that Ej is a nondegenerated
θ-image of Ej−1. If b = 0, the equation E0 is of the form xyaz · · · ⇉ zx · · · ,
and Ej−1 is of the same form. Now by 1 of Lemma 5.6.1, Ej is a support-
ing equation and thus has a basic tree. If b > 0, then E0 is of the form
xyaz · · · ⇉ zybx · · · . Equation Ej−1 is of the same form. Now Ej is of the
form yczydx · · · ⇉ xyaz · · · , where c + d = a and c ≥ 1. If c > 1, then Ej

is basic of the form B2. If c = 1, then Ej has a basic tree by 4 of Lemma
5.6.1 and by Lemmas 5.6.3 and 5.6.4.

Lemma 5.7.3. The equation xyat · · · ⇉ zcxB[x, z]y · · · , where a, c ≥ 1 and
t 6= y, has a basic tree.

Proof. By 1 of Lemma 5.6.1, all θ-images of this equation are supporting
equations or equations of Lemma 5.7.2.

Lemma 5.7.4. The equation xnymt · · · ⇉ zyA[y, z]x · · · , where n,m ≥ 1
and t 6= y, has a basic tree.
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Proof. If n = 1, every image of the equation is of the form

xymz · · · ⇇ Dx · · · , (5.39)

where D is a conjugate of zyA. If n > 1, the image of the equation under
the morphism x 7→ zx is

x(zx)n−1y · · · ⇇ yAzx · · · , (5.40)

and all the other images are of the form

xzy · · · ⇇ Dx · · · , (5.41)

where D is a conjugate of zyA.
Consider (5.39). If y2 ≤ D, then this is basic of the form B2. If yz ≤ D,

then this is the equation of Lemma 5.7.3. If z ≤ D, then this is of the form

xaybs · · · ⇉ zydx · · · , (5.42)

where a, b, d ≥ 1 and s 6= y. The case of (5.41) is similar. Equation (5.40)
is of the form

xaybs · · · ⇉ z(yz)dx · · · , (5.43)

where a, b, d ≥ 1 and s 6= y. It is enough to prove that (5.42) and (5.43)
have basic trees.

Consider (5.42). Assume first that a = 1. Every image of this equation
is of the form xybz · · · ⇇ Dx, where D is a conjugate of zyd. If z ≤ D,
then this is the equation of Lemma 5.7.2. If y2 ≤ D, this is basic of the
form B2. If yz ≤ D, then this is the equation of Lemma 5.7.3. Assume
then that a > 1. The image of the equation under the morphism x 7→ zx
is x(zx)a−1y · · · ⇇ ydzx · · · , and all other images are of the form xzy · · · ⇇

Dx · · · , where D is a conjugate of zyd. First of these is of type I and its
images have basic trees by Theorem 5.6.6. The latter is the equation of
Lemma 5.7.3 if zy ≤ D; otherwise its images have basic trees by Theorem
5.6.6.

Consider (5.43). Assume first that a = 1. Every image of this equation
is of the form xybz · · · ⇇ Dx, where D is a conjugate of z(yz)d. If yz ≤ D,
this is the equation of Lemma 5.7.3. Otherwise Dx = zcys, where 1 ≤ c ≤ 2
and s 6= y, and this image is of the form (5.42) and has a basic tree. Assume
then that a > 1. The image of the equation under the morphism x 7→ zx is
x(zx)a−1y · · · ⇇ (yz)dzx · · · , and all other images are of the form xzy · · · ⇇

Dx · · · , where D is a conjugate of z(yz)d. First of these goes back to the
case a = 1. The latter has a basic tree by Lemma 5.6.4.

Theorem 5.7.5. Every equation of length n with three unknowns has a
basic tree of height O(log n).
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Proof. The trivial equation U = U is a basic equation. All other equations
can be reduced from the left and split into one-sided equations. By multi-
plication from the right, every one-sided equation can be turned into one of
the equations

x2 · · · ⇉ ycx · · · (5.44)

xy · · · ⇉ ycx · · · (5.45)

xzat · · · ⇉ ycxB[x, y]z · · · (5.46)

xaybs · · · ⇉ yczB[y, z]x · · · (5.47)

xazbt · · · ⇉ yzB[y, z]x · · · (5.48)

xazbt · · · ⇉ ydzB[y, z]x · · · , (5.49)

where a, b, c ≥ 1, d > 1, t 6= z and s 6= y. We prove that all of these have
basic trees.

Equation (5.44) is basic of the form B2. Equation (5.45) is reduced by
the substitution x 7→ yx to the equation xy · · · = ycx · · · , which is basic of
the form B1. Equation (5.46) is the equation of Lemma 5.7.3. Equation
(5.48) is the equation of Lemma 5.7.4.

Equation (5.47) is of type I and its images are of the form xy · · · ⇇

Dx · · · , where D is a conjugate of yczB. If y2 ≤ D, then this is of the form
(5.44), if yz ≤ D, then of the form (5.46), and if z ≤ D, then of the form
(5.48). So every image of (5.47) and thus the equation itself has a basic
tree.

Also (5.49) is of type I and its images are of the form x(y · · · )a−1zby · · · ⇇

Dx · · · , where D is a conjugate of ydzB. Again these are of the form (5.44),
(5.46) or (5.48). So every image of (5.49) and thus the equation itself has a
basic tree.

The constructions of trees in the lemmas produce trees of bounded height
with two exceptions: Lemmas 5.6.3 and 5.7.2, where a tree with height of
order log(1 + |p − q|) is constructed for the equation

xyazyp · · · ⇉ zybxyq · · · . (5.50)

We prove that the powers of y here cannot be more than n, which proves
this theorem. In the definition of neighborhood, the rules N1, N2, N5 and
N6 can produce higher powers than those in the initial equation. There is
no need to use N6 to generate high powers and N5 is only used in Lemmas
5.5.5, 5.6.3 and 5.7.1, where it does not generate high powers. N2 is not
used to generate higher powers than those that are already in the equation.
Consider N1. Here an equation xU(x, y, z) ⇉ yaxV (x, y, z) can be turned
into xU(yix, y, z) ⇇ yaxV (yix, y, z) for high values of i. But in order for y
to be in the position of (5.50), the rules N1 or N2 must be used again. Then
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y is replaced by xuy for some u ∈ {x, z}∗ and the powers of y disappear.
The claim is proved.

Theorem 5.7.6. Every equation of length n with three unknowns has a
parametric solution of length exp(nO(1)).

Proof. By Theorem 5.7.5, every equation has a basic tree of height O(log n).
By Theorem 5.3.2, the leaf equations have parametric solutions of bounded
length. Now from Theorem 5.5.4 it follows that E has a parametric solution
of length O(n)52·27

k

, where k = O(log n), that is of length exp(nO(1)).

It can be noted that two word parameters are sufficient, except for the
trivial equation U = U : this is true for basic equations, and no new word
parameters are added when the rules in the definition of a neighborhood
are used. This could be expected because of the defect theorem. As for the
numerical parameters, for basic equations their number is O(1), and at each
step when going up in the basic tree only O(1) new parameters are added.
Thus the number of different numerical parameters is O(log n). The same
holds for the number of nested numerical parameters, that is the height of
the parametric words.

Based on Theorem 5.7.6 we can prove that the shortest nontrivial solu-
tion is of exponential length. However, this is not trivial. For example, if we
have a parametric word (piq)j , then by giving the value 1 for the numerical
parameters we get a short word, but the problem is that i = j = 1 does not
necessarily satisfy the linear Diophantine relation. Thus we need to estimate
the size of the minimal solution of the relation. We also need to make sure
that the solution of the word equation is indeed nontrivial.

Theorem 5.7.7. If an equation of length n with three unknowns has a
nontrivial solution, it has a nontrivial solution of length exp(nO(1)).

Proof. Consider an equation E : x · · · = y · · · and its parametric solution

{(hj , Rj) | 1 ≤ j ≤ m}

of length exp(nO(1)). If E has a nontrivial solution, it has a solution where
x and y begin with the same letter but z begins with a different letter. Let
h ◦ f ◦ hj be such a solution, where h ◦ f is a valuation. Now also f ◦ hj is
such a solution, and so is g ◦ hj if g ∈ Rj maps exactly the same numerical
parameters to zero as f . Thus g ◦hj is a nontrivial solution. We must select
g so that this solution is sufficiently short.

The lengths of the parametric words hj(t), where t ∈ {x, y, z}, are
exp(nO(1)). By Theorems 5.5.4 and 5.7.5, every occurrence of a word param-
eter in hj(t) appears at most g(i1) . . . g(ik) times in g(hj(x)), where i1, . . . , ik
are the numerical parameters and k = O(log n). Thus the length of g(hj(t))
is g(i1) . . . g(ik) exp(nO(1)).
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The conditions for g are that it must be in Rj and it must map exactly
the same numerical parameters to zero as f . The latter condition can be
handled by adding either the equation i = 0 (if f(i) = 0) or the inequality
i > 0 (if f(i) > 0) to Rj for every i ∈ Λ. Inequalities i > c can be
replaced with i = c + 1 + i′, where i′ is a new variable. In this way we get
a linear Diophantine relation R′

j, which is a disjunction of linear systems of
equations. Because f ∈ R′

j , at least one of these systems has a nonnegative
integer solution.

According to [66], if a system of linear equations has a nonnegative in-
teger solution, then it has one of size O(lM), where l is the number of
unknowns, M is an upper bound for the r × r subdeterminants of the aug-
mented matrix of the system, and r is the rank of the system. Now r is at
most l = O(log n). The system comes originally from the use of Theorem
5.3.2 on some equation in the basic tree of E. The lengths of the equations
in this tree are exponential (by Theorem 5.5.4), and so are the coefficients
in the system (by Theorem 5.3.2), so M = exp(nO(1)). Thus there is a
nonnegative integer solution of size exp(nO(1)). This solution gives us a
function g such that g(i1) . . . g(ik) exp(nO(1)) = exp(nO(1)). This proves the
theorem.

Now we consider the satisfiability problem. Constant-free equations al-
ways have the solution where every unknown gets the value ε, and usually
they have also other periodic solutions. The natural question is thus whether
a constant-free equation has a nontrivial solution. This can be easily reduced
to the satisfiability problem of equations with constants. In this way we get
the result that the above-mentioned question is in NP for equations on three
unknowns.

Theorem 5.7.8. The existence of a nontrivial solution of a constant-free
equation on three unknowns can be decided in nondeterministic polynomial
time.

Proof. The equation xU = yV , where U, V ∈ Ξ∗, has a nontrivial solution
if and only if it has a solution x = ax′, y = ay′, z = bz′, where a and b are
different letters and x′, y′, z′ ∈ Σ∗. So we are interested in the existence of a
solution for the equation obtained from xU = yV by replacing x with ax′, y
with ay′ and z with bz′, where x′, y′, z′ are now new unknowns. The length
of this equation is twice the length of the original equation.

There is a nondeterministic algorithm (see [53]) that solves the existence
of a solution for the last equation in time polynomial in n log N , where n is
the length of the equation and N is the length of the shortest solution. The
claim now follows from Theorem 5.7.7.
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Chapter 6

Unique Decipherability in

the Monoid of Languages

In this section we study unique decipherability in the monoids of unary and
nonunary regular languages.

In the first three sections we are interested in problems related to unique
decipherability in the monoid of unary languages. As stated in Section 2.6,
this monoid is isomorphic to the additive monoid of sets of nonnegative
integers. Thus we will formulate everything in terms of sets of numbers.
Often we can allow the sets to contain also negative integers. We will mostly
consider finite, or sometimes regular, sets.

We begin in Section 6.1 by giving the required definitions and by proving
some results about powers of sets of integers. These results are related to
the Frobenius problem, see e.g. [54] for a survey, [31] for a generalization for
words and [19] for related algebraic results. The main result of this section is
that if the elements of a set do not have a common divisor, then sufficiently
large powers of the set contain almost all integers between their minimums
and maximums. This result is very important in the later sections.

In Section 6.2 we consider the power equality problem. For example,
we show that it is sufficient to consider powers that are of linear size with
respect to the maximum of the sets. The results in this section form the
basis for the solution of the unique decipherability problem, and are also of
independent interest.

In Section 6.3 we give a characterization of codes in the additive monoid
of finite sets of integers. In particular, we prove that a family of three sets
is never a code, i.e. three sets always satisfy a nontrivial relation. We prove
a similar result for certain infinite sets, including all infinite rational sets.

In Section 6.4 we prove that the unique decipherability problem is un-
decidable in the monoid of binary regular languages.

This chapter is based on the articles [57] and [36].
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6.1 Additive Powers of a Set of Numbers

If m,n ∈ Z, k ∈ N0 and A,B ⊆ Z, then we use the following notation:

AB = {a + b | a ∈ A, b ∈ B} ,

Ak = {a1 + · · · + ak | a1, . . . , ak ∈ A} ,

A∗ =

∞⋃

k=0

Ak,

A + n = {a + n | a ∈ A} ,

A · n = {an | a ∈ A} ,

A/n = {a/n | a ∈ A} .

[m,n] = {a ∈ Z | m ≤ a ≤ n} ,

[m,∞) = {a ∈ Z | a ≥ m} ,

(−∞, n] = {a ∈ Z | a ≤ n} ,

The first three come from the theory of formal languages, and that is why
we use multiplicative notation even though we are dealing with sums.

We will often need to assume that the elements of a set do not have a
common divisor, or that the minimum of a set is zero. Thus we let

Sn = {A ⊆ [0, n] | 0, n ∈ A, gcd A = 1} .

If A ∈ Sn, then let Ã = {n − a | a ∈ A} be the “reverse” of A. Now ÃB =
ÃB̃.

Let A = {0, a1, . . . , ar} ⊆ N0 and gcd A = 1. It is well known that every
sufficiently large integer can be represented in the form

a1x1 + · · · + arxr, (6.1)

where x1, . . . , xr ∈ N0. The Frobenius problem asks what is the largest
integer that cannot be represented in this way. This integer is called the
Frobenius number of A and we denote it by G(A). The numbers (6.1) form
the set A∗, so G(A) is the largest integer not in A∗.

We define Fm(A) to be the smallest integer such that

A∗ ∩ [0,m] ⊆ AFm(A).

We assume that 0 ∈ A, so A ⊆ A2 ⊆ A3 ⊆ . . . and Fm(A) exists for every
m. The number Fm(A) tells how large the coefficients x1, . . . , xr need to be:
if n ≤ m and n has a representation of the form (6.1), then n has such a
representation where x1 + · · · + xr ≤ Fm(A).

There are many results concerning the size of the Frobenius number. We
use the following result from [6].
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Lemma 6.1.1. If A = {a0, . . . , ar} ∈ Sn, where 0 = a0 < · · · < ar = n,
then G(A) ≤ a1n − a1 − n ≤ n2 − 2n.

We also need an upper bound for Fm(A).

Lemma 6.1.2. If A = {a0, . . . , ar} ∈ Sn, where 0 = a0 < · · · < ar = n,
then Fm(A) ≤ n − 1 + m/n.

Proof. Let g = G(A) and a ∈ A∗ ∩ [0,m]. If a ≤ g + n, then a ∈ Ak,
where k = ⌊(g + n)/a1⌋. If a > g + n, then a = g + i + n(a − g − i)/n,
where i ∈ {1, . . . , n} is such that g + i ≡ a mod n. Now g + i ∈ Ak and
n(a − g − i)/n ∈ Al, where again k = ⌊(g + n)/a1⌋ and l = (a − g − i)/n,
and thus a ∈ Ak+l. So with the help of Lemma 6.1.1 we get the result

Fm(A) ≤ k + l ≤
g + n

a1
+

a − g − 1

n
≤ n − 1 +

m

n
.

Next we examine the structure of Ak for large k. If A ∈ Sn, then
Ak ⊆ [0, kn]. Because A∗ contains almost every natural number, Ak contains
almost every number from the interval [0, kn]. Only some numbers from the
beginning and from the end are missing. These missing numbers will be
essentially the same for all large values of k (of course the large missing
numbers will be getting larger and larger as k grows). This is formalized by
the following theorem.

Theorem 6.1.3. Let A ∈ Sn and k ≥ 2n − 2. Let

C = A∗ ∩ [0, n2 − 2n] and D̃ = (Ã)∗ ∩ [0, n2 − 2n].

Now

Ak = C ∪ [n2 − 2n + 1, kn − n2 + 2n − 1] ∪ (D + kn − n2 + 2n).

Proof. Let k ≥ 2n − 2. By Lemma 6.1.2,

F⌊kn/2⌋(A), F⌊kn/2⌋(Ã) ≤ n − 1 + k/2 ≤ k.

Now we get

Ak ∩ [0, ⌊kn/2⌋] = A∗ ∩ [0, ⌊kn/2⌋]

= (A∗ ∩ [0, n2 − 2n]) ∪ (A∗ ∩ [n2 − 2n + 1, ⌊kn/2⌋])

= C ∪ [n2 − 2n + 1, ⌊kn/2⌋].

Here the first equality holds, because k ≥ F⌊kn/2⌋(A), and the last equality
follows from Lemma 6.1.1. Similarly we get

Ãk ∩ [0, ⌊kn/2⌋] = D̃ ∪ [n2 − 2n + 1, ⌊kn/2⌋].

The claim follows.
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6.2 Power Equality for Sets of Numbers

In this section we study the power equality problem, that is the problem of
determining whether some powers of two finite sets A,B ⊆ Z are equal. The
following lemma tells how this problem can be reduced to the case where
minA = minB = 0.

Lemma 6.2.1. Let minAi = mi < maxAi = ni, Ai = Bi+mi, and k, l > 0.
Now Ak

1 = Al
2 if and only if Bk

1 = Bl
2 and m1n2 = m2n1.

Proof. The sets Ak
1 and Al

2 are equal if and only if

Bk
1 + km1 = Bl

2 + lm2. (6.2)

If the sets Ak
1 and Al

2 are equal, then their minimums and maximums
are equal, that is km1 = lm2 and kn1 = ln2. From this and (6.2) it follows
that Bk

1 = Bl
2 and m1n2 = m2n1.

On the other hand, if Bk
1 = Bl

2, then

k(n1 − m1) = maxBk
1 = max Bl

2 = l(n2 − m2).

Multiplying this by m1m2 gives

km1(m2n1 − m1m2) = lm2(m1n2 − m1m2).

If m1n2 = m2n1, then km1 = lm2 and (6.2) holds.

It is clear that if min A = min B = 0, then some powers of A and B can
be equal only if gcd A = gcd B = d, and if this is the case, then Ak = Bl if
and only if (A/d)k = (B/d)l. Thus we can assume that d = 1.

Example 6.2.2. Let A2 = B2. If the two smallest elements of A are 0 and
a, then the two smallest elements of A2 are also 0 and a. Thus 0 and a must
also be the two smallest elements of B. Similarly the two largest elements
of A and B must be the same.

The example of A 6= B, A2 = B2 where the largest element of A is as
small as possible is A = {0, 1, 3, 4}, B = {0, 1, 2, 3, 4} (or vice versa). In this
case A2 = B2 = {0, 1, 2, 3, 4, 5, 6, 7, 8}.

The sets A,B can also be selected to be maximal in the sense that they
are not proper subsets of any set D such that A2 = D2. For example, if

A = {0, 1, 3, 7, 8, 9}, B = {0, 1, 3, 6, 8, 9}, C = {0, 1, 2, 6, 8, 9},

then A2 = B2 = C2 6= D2 for all D such that A ( D, B ( D or C ( D.
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Theorem 6.2.3. Let m ≤ n, A ∈ Sm and B ∈ Sn. There are i, j > 0 such
that Ai = Bj if and only if

Ak ∩ [0, n2 − 2n] = Bk ∩ [0, n2 − 2n] and

Ãk ∩ [0, n2 − 2n] = B̃k ∩ [0, n2 − 2n],
(6.3)

where k = 2n − 2.

Proof. If Ai = Bj, then im = jn and Aki = Bkj for all k. Thus there
are such i, j if and only if there are such i, j ≥ 2n − 2. If Ai = Bj, where
i, j ≥ 2n − 2, then (6.3) holds by Lemma 6.1.2.

Next, assume that (6.3) holds. Consider two arbitrary integers i, j ≥
2n − 2 satisfying im = jn. Then Ai = Bj by Theorem 6.1.3.

Theorem 6.2.3 gives a condition for the existence of the required num-
bers i and j, and this leads to an algorithm for solving the power equality
problem. The next theorem gives a similar condition, which is perhaps not
as useful algorithmically, but may be easier in some other ways.

Theorem 6.2.4. Let A ∈ Sm and B ∈ Sn. There are i, j > 0 such that
Ai = Bj if and only if A∗ = B∗ and (Ã)∗ = (B̃)∗.

Proof. If m ≤ n, Ai = Bj and C ∈ {A,B, Ã, B̃}, then

C∗ = (C2n−2 ∩ [0, n2 − 2n]) ∪ [n2 − 2n + 1,∞)

by Lemmas 6.1.1 and 6.1.2. Now A∗ = B∗ and (Ã)∗ = (B̃)∗ by Theorem
6.2.3. On the other hand, if A∗ = B∗ and (Ã)∗ = (B̃)∗, then (6.3) holds by
Lemma 6.1.2.

We can use Theorem 6.2.3 to prove that if Ak = Bk holds for some k,
then it holds for all sufficiently large k. We are not aware whether Ak = Bk

implies Ak+1 = Bk+1.

Theorem 6.2.5. If A,B ∈ Sn and Ak = Bk for some k > 0, then Ak = Bk

for all k ≥ 2n − 2.

Proof. If Ak = Bk for some k, then by Theorem 6.2.3 equation (6.3) holds
for k = 2n − 2, and by Lemma 6.1.2 it holds for all larger k as well. The
claim now follows from Theorem 6.1.3.

Theorem 6.2.5 raises the following question: if n is fixed, then what is
the smallest number m such that if A,B ∈ Sn and Ak = Bk for some k > 0,
then Ak = Bk for all k ≥ m? Theorem 6.2.5 proves that m ≤ 2n − 2, and
the following example proves that m ≥ n − 2.
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Example 6.2.6. Let A = {0, 1, n−1, n}. Now An−3 6= [0, n]n−3, but An−2 =
[0, n]n−2. The inequality holds, because n − 2 /∈ An−3. The equality holds,
because every element of [0, n]n−2 = [0, (n−2)n] is of the form an+b, where
a ∈ [0, n−3] and b ∈ [0, n], and if a+b ≤ n−2, then an+b ∈ {0, 1, n}n−2, and
if a+b > n−2, then an+b = (a+b−n+1)n+(n−b)(n−1) ∈ {0, n−1, n}n−2.

6.3 Unique Decipherability for Sets of Numbers

In this section we study the unique decipherability problem in the monoid
of sets of integers. We defined in Section 2.6 that a subset of a semigroup
is a code if the elements of the subset do not satisfy a nontrivial equation.
The monoid of sets of integers is commutative, so every balanced equation
is trivial. Now the definition of a code can be written as follows. A family
of sets {A1, . . . , As} is a code, or has the unique decipherability property, if
there are no numbers k1, . . . , ks, l1, . . . , ls such that Ak1

1 . . . Aks
s = Al1

1 . . . Als
s

and ki 6= li for some i.

Theorem 6.3.1. Let A1, . . . , As be finite sets of integers. Let min Ai = mi

and maxAi = ni. The sets Ai form a code if and only if s = 1 and A1 6= {0}
or s = 2 and m1n2 6= m2n1.

Proof. Let Ak1
1 . . . Aks

s = Al1
1 . . . Als

s . The minimums and maximums of these
sets must be the same, that is

m1(k1 − l1) + · · · + ms(ks − ls) = 0 and

n1(k1 − l1) + · · · + ns(ks − ls) = 0.

This can be viewed as a pair of equations with s unknowns ki − li and
coefficients mi, ni. This pair of equations has nontrivial solutions if and
only if the rank of the matrix

(
m1 . . . ms

n1 . . . ns

)

is smaller than s. The rank is s if and only if s = 1 and A1 6= {0} or s = 2
and m1n2 6= m2n1.

If the rank is s, then necessarily ki = li for all i. This means that the
sets Ai form a code.

If the rank is smaller than s, then we can select the numbers ki and li
to be positive integers so that kj 6= lj for some j. Let Ai = Bi + mi. Let

d = gcd(B1∪· · ·∪Bs) and Ci = Bi/d. If D = Ck1
1 . . . Cks

s and E = C l1
1 . . . C ls

s ,

then D∗ = (C1 ∪ · · · ∪ Cs)
∗ = E∗ and (D̃)∗ = (C̃1 ∪ · · · ∪ C̃s)

∗ = (Ẽ)∗. Now
from Theorem 6.2.4 it follows that Dk = El for some k, l. Because

dmax D = k1(n1 − m1) + · · · + ks(ns − ms)

= l1(n1 − m1) + · · · + ls(ns − ms) = dmax E,
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it must be k = l. This means that

(Ak1
1 . . . Aks

s )k =(Bk1
1 . . . Bks

s )k + k(k1m1 + · · · + ksms)

=Dk · d + k(k1m1 + · · · + ksms)

=Ek · d + k(l1m1 + · · · + lsms)

=(Bl1
1 . . . Bls

s )k + k(l1m1 + · · · + lsms) = (Al1
1 . . . Als

s )k

and the sets Ai do not form a code.

A subset of a monoid is rational if it is obtained from finite sets by
repeatedly using the operations of union, product and star. In other words,
all finite sets are rational, and if A and B are rational, so are A ∪ B, AB
and A∗. In the case of the additive monoid N0, a set A ⊆ N0 is rational if
and only if it is ultimately periodic, that is if there are finite sets B,C and
a number n such that A = B ∪ C{n}∗.

We have given a characterization of all codes in the additive monoid
of finite sets of integers. Next it would be natural to study the unique
decipherability problem for rational sets. We can indeed generalize Theorem
6.3.1, and the condition we need is actually weaker than rationality: some
power of some set must contain an infinite rational set. The next lemma
gives some equivalent conditions.

Lemma 6.3.2. Let A ⊆ Z be infinite and minA > −∞. The following are
equivalent:

(i) Ak contains an infinite rational set for some k,

(ii) Ak contains an infinite arithmetic progression for some k,

If these conditions hold and 0 ∈ A, then {gcd A}∗ r Ak is finite for some k.
If also min A = 0, then A∗ = Al for some l (this is called the finite power
property).

Proof. Every arithmetic progression is a rational set, and every infinite ra-
tional set contains an infinite arithmetic progression, so (i) and (ii) are
equivalent.

Let 0 ∈ A and let a, b ∈ Z be such that a + bn ∈ Ak for every n ≥
0. Because A∗ contains all sufficiently large multiples of gcd A, there are
numbers c, l such that every multiple of gcd A that is in the interval [c +
1, c + b] is also in Al. Now Al+k contains every number that is greater than
a + c and divisible by gcd A.

Let min A = 0 and let {gcd A}∗ r Ak be finite. Now Ak ⊆ Ak+1 ⊆
Ak+2 ⊆ · · · ⊆ {gcd A}∗ and only finitely many of these inclusions can be
proper, so Al = Al+1 = Al+2 = · · · = A∗ for some l.
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It is not necessary for any of the conditions in Lemma 6.3.2 to hold for
k = 1. For example, if A is the set of all squares, then A4 = N0 = A∗ by
Lagrange’s four-square theorem.

Theorem 6.3.3. Let A1, . . . , As be sets of integers. Let min Ai = mi > −∞
for all i. Let Ak

1 contain an infinite arithmetic progression for some k. The
sets Ai form a code if and only if s = 1 and m1 6= 0.

Proof. If s = 1 and m1 = 0, then Al
1 = A∗

1 = Al+1
1 for some l by Lemma

6.3.2. If s = 1 and m1 6= 0, then Ak
1 6= Al

1 for all k 6= l, because min Ak
1 =

km 6= lm = minAl
1 for all k 6= l.

Let s ≥ 2. There are k1, k2, l1, l2 > 0 such that k1m1 + k2m2 = l1m1 +
l2m2, but k1 6= l1 or k2 6= l2. Let Ai = Bi + mi. Now Bk

1 contains an
infinite arithmetic progression, and the same is true for the sets (Bk1

1 Bk2
2 )k

and (Bl1
1 Bl2

2 )k. By Lemma 6.3.2, there is a number l such that (Bk1
1 Bk2

2 )∗ =
(Bk1

1 Bk2
2 )l and (Bl1

1 Bl2
2 )∗ = (Bl1

1 Bl2
2 )l. Also (Bk1

1 Bk2
2 )∗ = (B1 ∪ B2)

∗ =
(Bl1

1 Bl2
2 )∗. Now

(Ak1
1 Ak2

2 )l =(Bk1
1 Bk2

2 )l + l(k1m1 + k2m2)

=(Bk1
1 Bk2

2 )∗ + l(k1m1 + k2m2)

=(Bl1
1 Bl2

2 )∗ + l(l1m1 + l2m2)

=(Bl1
1 Bl2

2 )l + l(l1m1 + l2m2) = (Al1
1 Al2

2 )l

and the sets Ai do not form a code.

In Theorem 6.3.3 we assumed that every infinite set is one-way infinite,
i.e., has a finite minimum. The case where every set has a finite maximum
is of course symmetric. We can also consider the two-way infinite case, i.e.
the case when at least one set has arbitrarily large elements, and at least
one (possibly the same) has arbitrarily small elements. This is done in the
following theorem.

Theorem 6.3.4. Let A and B be (not necessarily distinct) infinite sets
of integers. Let the sets (A ∩ [0,∞))k and (B ∩ (−∞, 0])k contain infinite
arithmetic progressions for some k. The sets A,B do not form a code.

Proof. Now (AB)k contains increasing and decreasing infinite arithmetic
progressions. Let m ∈ (AB)k and C + m = (AB)k. Let a, b be such that

gcd C = gcd(C ∩ [a,∞)) = gcd(C ∩ (−∞, b]).

By Lemma 6.3.2, there is a number l1 such that (C ∩ [a,∞))l1 contains all
but finitely many of the positive numbers divisible by gcd C. Similarly, there
is a number l2 such that (C ∩ (−∞, b])l2 contains all but finitely many of
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the negative numbers divisible by gcd C. If l > l1, l2, then C l = {± gcd C}∗.
Now

((AB)k)l+gcd C = C l+gcd C + ml + m gcd C

= {± gcd C}∗ + ml + m gcd C

= {± gcd C}∗ + ml

= C l + ml = ((AB)k)l

and the sets A,B do not form a code.

We have shown that three finite sets of integers do not form a code, and
we have generalized this for certain infinite sets. However, no similar result
holds for all infinite sets. The next example shows that there are arbitrarily
large codes in the additive monoid of sets of integers.

Example 6.3.5. Let Ai = {1} ∪ {(i + js)! | j ∈ N0} for i = 1, . . . , s. Let
B = Ak1

1 . . . Aks
s . We prove that the sets Ai form a code by showing that

the set B uniquely determines the exponents ki. Let j be such that js >
minB = k1 + · · · + ks. Now k(i + js)! + min B − k ∈ B for k ≤ ki, but not
for k = ki + 1. Thus every ki is determined by B.

6.4 Unique Decipherability for Languages

In this section we study the unique decipherability problem in the monoid
of nonunary regular languages.

We fix two disjoint binary alphabets Σ1 = {a, b} and Σ2 = {c, d}. We
will use the following lemma that was proved in [11].

Lemma 6.4.1. The unique decipherability problem is undecidable in the
trace monoid Σ∗

1 × Σ∗
2.

We will show that the monoid Σ∗
1 × Σ∗

2 can be effectively embedded in
the monoid of regular languages over a non-unary alphabet.

For a word w = a1 . . . an, let sw(w) be the set of all (scattered) subwords
of w, that is

sw(w) = {ai1 . . . aik | 1 ≤ i1 < · · · < ik ≤ n} .

Let
X = (Σ1 ∪ Σ2)

+ r Σ+
1 r Σ+

2

be the set of those words that contain letters from both Σ1 and Σ2. For all
pairs of words (u, t) ∈ Σ∗

1 × Σ∗
2 we define a regular language

L(u, t) = sw(u) ∪ sw(t) ∪ X (6.4)

over Σ1 ∪ Σ2.
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Lemma 6.4.2. The mapping L defined by (6.4) is an injective morphism.

Proof. First we show that if u, u′ ∈ Σ∗
1 and t, t′ ∈ Σ∗

2, then

L(u, t)L(u′, t′) = L(uu′, tt′).

Because X ⊆ L(u, t) and ε ∈ L(u′, t′), the set X is a subset of L(u, t)L(u′, t′).
Of the words in Σ∗

1, the language L(u, t)L(u′, t′) contains exactly those that
can be written as xy, where x ∈ sw(u) and y ∈ sw(u′). These words form
the set sw(uu′). Similarly, L(u, t)L(u′, t′) ∩ Σ∗

2 = sw(tt′). Thus

L(u, t)L(u′, t′) = sw(uu′) ∪ sw(tt′) ∪ X = L(uu′, tt′),

and L is a morphism.
Next we show that if u, u′ ∈ Σ∗

1 and t, t′ ∈ Σ∗
2 and L(u, t) = L(u′, t′),

then u = u′ and t = t′. The longest words of Σ∗
1 and Σ∗

2 in L(u, t) are u
and t, and the longest words of Σ∗

1 and Σ∗
2 in L(u′, t′) are u′ and t′. Thus if

L(u, t) = L(u′, t′), then u = u′ and t = t′ and L is injective.

Theorem 6.4.3. The unique decipherability problem is undecidable in the
monoid of regular languages over a non-unary alphabet.

Proof. For the alphabet Σ1 ∪ Σ2, this follows from Lemma 6.4.2. This al-
phabet has four letters, but (Σ1 ∪ Σ2)

∗ can be embedded in {a, b}∗, so the
undecidability holds already for a binary alphabet.

The question of the decidability of the unique decipherability problem
in the monoid of finite languages could also be considered. It is noteworthy
that in [11] everything is finite: the input is a finite collection of elements
of the monoid Σ∗

1 × Σ∗
2. On the other hand, we obtain our result only for

regular subsets of (Σ1∪Σ2)
∗: the languages L(u, t) contain an infinite regular

part X, which is essential in the proof of Lemma 6.4.2. Actually, we do not
know whether our result extends to finite collections of finite languages, so
it remains an open question whether the problem is undecidable already in
the monoid of finite languages.

The power equality problem for finite or regular nonunary languages is
also interesting: given two languages A and B, does there exist two numbers
k, l ≥ 1 such that Ak = Al? The decidability of this problem is not known.
The easier problem of determining whether a language A has the finite power
property, or whether there is a number k such that Ak = A∗, is known to
be decidable, but the proofs are not trivial, see [60], [25] and [40].
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Chapter 7

Conclusion

In Chapter 3 we, among other things, surveyed the following two open ques-
tions:

• How large is IS(n), the maximal size of an independent system of word
equations on n unknowns?

• How large is DC(n), the maximal size of a decreasing chain of word
equations on n unknowns?

For the first question we know that 3 ≤ IS(3) ≤ UB and Θ(n4) ≤ IS(n) ≤
UB. For the second question we know that 7 ≤ DC(3) ≤ UB and Θ(n4) ≤
IS(n) ≤ UB. Here the bound DC(3) ≥ 7 is new. Improving these estimates
is one of the big open problems in combinatorics on words. In particular,
the existence of a finite upper bound is a challenging problem.

In Chapter 4 we used polynomials and linear algebra to study word
equations. One of the results we obtained in this way was that independent
systems of word equation on three unknowns can have at most |E|2 equa-
tions, where E is the shortest equation of the system. This bound works
for n unknowns if the system remains independent when considering only
solutions of rank n− 1. These results suggest the following, possibly easier,
variations of the above open question:

• Can we give a better bound than |E|2 in the case of three unknowns?

• Can we give a similar bound in the case of n unknowns?

In Chapter 5 we reproved Hmelevskii’s theorem and gave a bound for
the size of parametric solutions and for the size of the shortest nontrivial
solution. We concluded that solving the existence of a nontrivial solution
for a constant-free equation on three unknowns is in NP.

In Chapter 6 we first analyzed the unique decipherability problem and
other related problems in the monoid of unary languages, or equivalently, in
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the monoid of sets of natural numbers. Then we proved that, in contrast to
the unary case, the problem is undecidable in the monoid of binary regular
languages. Decidability of this problem remains open for finite languages.
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[54] Jorge L. Ramı́rez Alfonśın. The Diophantine Frobenius Problem. Oxford
University Press, 2005.

[55] Aleksi Saarela. On the complexity of Hmelevskii’s theorem and sat-
isfiability of three unknown equations. In Proceedings of the 13th In-
ternational Conference on Developments in Language Theory, pages
443–453, 2009.

[56] Aleksi Saarela. Systems of word equations and polynomials: a new
approach. In Proceedings of the 8th International Conference WORDS,
pages 215–225, 2011.

[57] Aleksi Saarela. Unique decipherability in the additive monoid of sets
of numbers. RAIRO Inform. Theor. Appl., 45(2):225–234, 2011.

[58] Arto Salomaa. The Ehrenfeucht conjecture: a proof for language theo-
rists. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 27:71–82, 1985.

[59] August Albert Sardinas and George W. Patterson. A necessary and
sufficient condition for unique decomposition of coded messages. In
IRE Intern. Conv. Rec. 8 (1953), pages 104–108. Chapman and Hall,
1953.

[60] Imre Simon. Limited subsets of a free monoid. In Proceedings of the
19th Annual Symposium on Foundations of Computer Science, pages
143–150, 1978.

[61] Jean-Claude Spehner. Quelques problémes d’extension, de conjugaison
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[63] Axel Thue. Über unendliche zeichenreihen. Norske Vid. Selsk. Skr. I.
Mat. Nat. Kl., 7:1–22, 1906.

95
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