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Preface

Combinatorics on words is an area of discrete mathematics that studies combinatorial
properties of finite and infinite sequences of symbols. It has applications in many
fields of mathematics and computer science. The goal of these lecture notes is to
provide an introduction to this area.

Not many prerequisites are needed. The reader is assumed to be familiar with
things like vectors, matrices, and modular arithmetic, and know the definitions of a
group and a homomorphism. Of course, because this is an advanced level course,
some mathematical maturity is expected, and the emphasis is on theorems and proofs.
Some theorems, examples and exercises require a little bit of knowledge on other
topics such as graph theory or programming. These can be skipped if necessary.

The lecture notes were written for a half-semester advanced course in the Uni-
versity of Turku. They are partially based on old full semester lecture notes by
Juhani Karhumäki. Several books mentioned in the bibliography have also been used
as references. There are connections to many other courses such as Automata and
Formal Languages, Semigroup Theory, and Symbolic Dynamics.
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Chapter 1

Words and concatenation

1.1 Basic definitions

An alphabet is a nonempty finite set. The elements of an alphabet are called letters
(or symbols). Alphabets of size k are called k-ary. In the cases k = 1, k = 2, k = 3,
we can use the terms unary, binary, ternary, respectively. Most often we use Σ to
denote an alphabet.

Example 1.1.1. Some typical examples of alphabets are the alphabet of binary
digits {0, 1}, the alphabet of decimal digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and the alphabet
of the 26 English letters {a, . . . , z}.

A word over an alphabet Σ is a finite sequence of elements of Σ. A word
(a1, . . . , an) is usually written without the commas and parentheses as a1 · · · an. We
allow the case n = 0, which gives the empty word, denoted by ε. The set of all words
over Σ is denoted by Σ∗.

The length of a word w = a1 · · · an is n and it is denoted by |w|. The set of words
of length n over Σ is denoted by Σn. If Σ is k-ary, then there are kn words in Σn.
We identify words of length one with letters, that is, Σ1 = Σ.

A word is called k-ary if it contains at most k different letters. Thus a word
over a k-ary alphabet is k-ary, but sometimes it might be also j-ary for some j < k.
Every k-ary word is also l-ary for all l ≥ k.

Example 1.1.2. Let Σ = {a, b}. Then Σ0 = {ε}, Σ1 = {a, b}, Σ2 = {aa, ab, ba, bb},
and Σ3 = {aaa, aab, aba, abb, baa, bab, bba, bbb}.

The concatenation or product of words u and v, denoted by u · v or uv, is the
word consisting of the letters of u followed by the letters of v. In other words,
if u = a1 · · · am and v = b1 · · · bn, then uv = a1 · · · amb1 · · · bn. It is clear that
|uv| = |u|+ |v|.

Concatenation is associative, that is, (uv)w = u(vw) for all words u, v, w. There-
fore, we can write the concatenation of several words without parentheses. The
empty word acts as a neutral element, that is, εw = wε = w for all words w. If
the alphabet is not unary, then there exist words u, v such that uv 6= vu, so con-
catenation is not commutative. For example, if a and b are distinct letters, then
ab 6= ba. A characterization of pairs of words (x, y) such that xy = yx is proved later
in Theorem 1.2.2.

Example 1.1.3. Consider the words u = side and v = road over the alphabet
{a, . . . , z}. Then uv = sideroad, vu = roadside and uuvu = sidesideroadside.
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Let w be a word. A word u is a

• factor of w if w = xuy for some words x, y,

• prefix of w if w = uy for some word y,

• suffix of w if w = xu for some word x,

• subword of w if w = x0u1x1 · · ·ukxk and u = u1 · · ·uk for some words x0, . . . , xk
and u1, . . . , uk.

A factor (prefix, suffix) u of w is a proper factor (proper prefix, proper suffix, respec-
tively) if u 6= w.

If w is a word of length n and k ∈ {0, . . . , n}, then w has exactly one prefix
(suffix) of length k, denoted by prefk(w) (suffk(w), respectively). On the other hand,
the number of factors of a word depends not only on the length but also the structure
of the word. For example, if a and b are distinct letters, then aa has three factors,
but ab has four. If u and v are prefixes (suffixes) of w, then one of u and v is a prefix
(suffix, respectively) of the other.

Example 1.1.4. The word 0122 ∈ {0, 1, 2}∗ has

• ten factors ε, 0, 1, 2, 01, 12, 22, 012, 122, 0122,

• five prefixes ε, 0, 01, 012, 0122,

• five suffixes ε, 2, 22, 122, 0122,

• twelve subwords ε, 0, 1, 2, 01, 02, 12, 22, 012, 022, 122, 0122.

Remark 1.1.5. Sometimes in the literature, factors are called subwords, and sub-
words are called scattered subwords or sparse subwords.

Powers of a word w are defined in the usual way: w0 = ε and wn+1 = wn · w for
all n ∈ Z≥0. Then wn is called the nth power or n-power of w. The words w2 and
w3 can be called the square and cube of w, respectively. Clearly wmwn = wm+n and
(wm)n = wmn for all m,n ∈ Z≥0.

Example 1.1.6. Let us consider words over the alphabet {a, . . . , z}. The English
word hotshots = (hots)2 is a square. The Finnish word kokoko = (ko)3 is a cube.

Let Σ and Γ be alphabets. A mapping h : Σ∗ → Γ∗ is a morphism (or homo-
morphism) if h(uv) = h(u)h(v) for all u, v ∈ Σ∗. It follows that if h : Σ∗ → Γ∗ is a
morphism, then h(u1 · · ·un) = h(u1) · · ·h(un) for all u1, . . . , un ∈ Σ∗.

Every mapping h1 : Σ → Γ∗ can be extended to a morphism h : Σ∗ → Γ∗ in a
unique way by the formula h(a1 · · · an) = h1(a1) · · ·h1(an) for all a1, . . . , an ∈ Σ. For
this reason, when defining a morphism, it is enough to specify the images of the
letters.

Example 1.1.7. Consider the morphism

h : {a, b, c}∗ → {a, b, c}∗, h(a) = abca, h(b) = a, h(c) = ε.

Then
h(abbc) = h(a)h(b)h(b)h(c) = abca · a · a · ε = abcaaa.
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Example 1.1.8. The mapping

f : {a, b}∗ → {a, b}∗, f(w) = (ab)|w|

is a morphism, because

f(uv) = (ab)|uv| = (ab)|u|+|v| = (ab)|u|(ab)|v| = f(u)f(v)

for all u, v ∈ Σ∗. The mapping

g : {a, b}∗ → {a, b}∗, g(w) = w2

is not a morphism, because

g(ab) = abab 6= aabb = g(a)g(b).

We conclude this section with some examples about how words can be used in
different areas. The notation defined in Example 1.1.9 is used later in these lecture
notes. Otherwise, the purpose of these examples is mostly just to give perspective,
and they are not necessary for the material that follows.

Example 1.1.9 (Automata and formal languages). A language (or formal language)
is a set of words. Theory of formal languages is closely related to combinatorics on
words. If A and B are languages and n ∈ Z≥0, we can use the following notation:

AB = {uv | u ∈ A, v ∈ B},
An = {u1 · · ·un | u1, . . . , un ∈ A},

A∗ =
∞⋃
n=0

An,

A+ =

∞⋃
n=1

An.

This is consistent with how we defined Σn and Σ∗ earlier. If w is a word, we can use
the notation

wA = {w}A = {wu | u ∈ A},
Aw = A{w} = {uw | u ∈ A},
w∗ = {w}∗ = {wn | n ∈ Z≥0},
w+ = {w}+ = {wn | n ∈ Z+}.

The language AB can be called the concatenation of A and B, and the language A∗

can be called the Kleene star of A. A language is regular if it can be constructed
from finite languages by repeatedly applying the operations union, concatenation
and Kleene star. Regular languages have many equivalent definitions. For example,
they can be defined as the languages recognized by deterministic finite automata.

Example 1.1.10 (Algebra). Associativity and existence of a neutral element mean
that, using algebraic terminology, (Σ∗, ·) is a monoid. It is not a group, because
nonempty words do not have inverses. Theory of monoids can be useful when
studying words, and words can be useful when studying monoids or groups. We
formally define and consider monoids in Section 2.3.
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Example 1.1.11 (Number theory). Let B ≥ 2 be an integer. Every nonnegative
integer n can be represented in the form

n = akB
k + · · ·+ a0B

0,

where k ≥ 0 and a0, . . . , ak ∈ {0, . . . , B − 1}. Then the word ak · · · a0 over the
alphabet Σ = {0, . . . , B − 1} can be called a B-ary representation of n. Often we
require that ak 6= 0 to make the representation unique. Conversely, we can define a
function

NB : Σ∗ → Z≥0, NB(ak · · · a0) = akB
k + · · ·+ a0B

0

that maps a word to the number it represents. Then

NB(uv) = NB(u) ·B|v| +NB(v)

for all u, v ∈ Σ∗. Representations of real numbers can be viewed as infinite words,
which are defined and studied in Chapter 3.

Example 1.1.12 (Programming). In programming languages, words are usually
called strings and letters are called characters. Concatenation is often denoted by
the symbol +. In some languages, characters and strings are different types, so for
example, the character a is not the same as the string a. In some other languages,
characters are simply strings of length one, so the character a is the same as the
string a. As stated above, we use the latter convention.

Example 1.1.13 (Algorithms). The study of string algorithms in computer science
is closely related to combinatorics on words. Finding a longest common factor of
two words is an example of a nontrivial algorithmic problem. It can be solved by
dynamic programming, or more efficiently by using a data structure called suffix
tree. For example, an entire book can be viewed as a single word. Then the longest
common factor of the books Alice’s Adventures in Wonderland by Lewis Carroll and
Metamorphosis by Franz Kafka is “ he could think of nothing ”. If Metamorphosis is
replaced by the book Through the Looking-Glass by Lewis Carroll, then the longest
common factor is “ in one hand and a piece of bread-and-butter in the other. ”.

Example 1.1.14 (Encodings). Let Σ = {a, . . . , z} ∪ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. We
could try to represent the Morse code as a morphism f : Σ∗ → {·,−}∗, where ·
represents a short and − a long signal. Then, for example, f(e) = ·, f(t) = −, and
f(a) = ·−. However, f(et) = f(a), so this morphism is not injective. This means
that if we receive an encoded message ·−, we do not know whether it is an encoding
of a or et. In practise, this is solved by adding a pause after the encoding of each
letter. This idea can be represented by the morphism g : Σ∗ → {·,−,�}∗ defined by
g(a) = f(a)� for all a ∈ Σ, where � represents a pause. The morphism g is injective,
so from an encoded message g(w) we can always deduce the original message w. This
is related to the definition of a code in Section 2.3.

Example 1.1.15 (Bioinformatics). A DNA strand consists of a sequence of the four
bases adenine, cytosine, guanine and thymine. These strands are often modelled as
words over the alphabet {A,C,G,T}.
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Exercises

1.1.1. How many words are there in {a, b, c}n that contain all three letters at least
once?

1.1.2. How many words in {a, b}5 contain aab as a factor? How many words in
{a, b}5 contain aba as a factor? Can you describe the “reason” why these numbers
are different?

1.1.3.* (Graph theory.) Let k, n ≥ 1 and let Σ be a k-ary alphabet. The n-
dimensional k-ary De Bruijn graph is the directed graph (with loops) whose set of
vertices is Σn and there is an edge from u to v if and only if suffn−1(u) = prefn−1(v).
Show that this graph is Eulerian. Conclude that there exists a word, called a De
Bruijn word, of length kn+1 + n having every word in Σn+1 as a factor.

1.1.4.* What is the maximum number of factors a binary word of length 10 can
have?

1.1.5. Are the following functions morphisms:

f : {a, b}∗ → {a}∗, f(w) = a|w|+1,

g : {a, b}∗ → {a, b}∗, g(a1 · · · an) = a21 · · · a2n,

where a1, . . . , an ∈ {a, b}.

1.1.6. Consider the following properties of a word x or a pair of words (x, y): x = ε,
x 6= ε, x is a square, |x| = |y|, x is a factor of y, x is a prefix of y. Which of these
properties are preserved by morphisms in the sense that if x or (x, y) has the property,
then also h(x) or (h(x), h(y)) has the property for all morphisms h?

1.1.7. Let B ≥ 2 be an integer and Σ = {0, . . . , B − 1} an alphabet. We can define a
function

NB : Σ∗ → Z≥0, NB(a0 · · · ak) = a0B
0 + · · ·+ akB

k

that maps a word to the number it represents in reverse B-ary notation. Give a
formula for NB(uv), where u, v ∈ Σ∗ (similar to the one in Example 1.1.11).

1.1.8. Many text editors have a “search and replace” feature. If w is a word
representing the text and we want to replace the first occurrence of a word u in w by
a word v, then this can be formally described by the function

replace(w, u, v) =

{
xvy if w = xuy and u occurs in xu only as a suffix,

w if u does not occur in w.

Let w0, u, v be fixed words and let wi+1 = replace(wi, u, v) for all i ≥ 0. What
does the sequence w0, w1, w2, . . . look like if (w0, u, v) is (a, a, aa) or (a4b, ab, ba) or
(ababbaba, abba, baab)?

1.1.9.* With the notation of the previous exercise, show that if |u| = |v|, then
wi+1 = wi for all large enough i.

1.1.10.* (Programming.) Write a program that takes as input a word and a morphism
(choose a suitable way to represent the morphism) and returns the image of the word
under the morphism.
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1.2 Commutation, primitivity and conjugacy

The following result is known as Levi’s lemma. It is frequently used without specifically
referring to it.

Lemma 1.2.1. Let u, v, x, y be words and uv = xy. Then exactly one of the following
is true:

1. |u| < |x| and x = ut and v = ty for some nonempty word t.

2. |u| = |x| and u = x and v = y.

3. |u| > |x| and u = xt and y = tv for some nonempty word t.

Proof. Let uv = xy = a1 · · · an, where a1, . . . , an are letters. There exist numbers
k,m such that u = a1 · · · ak and x = a1 · · · am. If k < m, then the first condition is
satisfied with t = ak+1 · · · am. If k = m, then the second condition is satisfied. If
k > m, then the third condition is satisfied with t = am+1 · · · ak.

t

u v

x y

Figure 1.1: Illustration of the first condition of Levi’s lemma. These
kinds of diagrams are frequently used in combinatorics on words.

The second condition of Levi’s lemma is often combined with the first or the last
one. For example, the combination of the first two conditions could be stated as
follows: |u| ≤ |x| and x = ut and v = ty for some word t.

Letting u = x in Levi’s lemma gives the following cancellation property: If
uv = uy, then v = y. Similarly, if uv = xv, then u = x.

We saw earlier that concatenation is not a commutative operation. However,
there are some words that commute with each other. Trivially, if w is any word and
m,n any nonnegative integers, then wm · wn = wn · wm. Next we prove that there
are no other examples of commuting words, that is, words commute if and only if
they are powers of a common word.

Theorem 1.2.2. Let x and y be words. Then xy = yx if and only if there exists a
word w such that x, y ∈ w∗.

Proof. The “if” direction is clear. The “only if” direction is proved by induction on
|xy|. If |xy| = 0, then x = y = ε and the claim is clear. Let |xy| > 0. By symmetry,
we can assume that |x| ≤ |y|. By Levi’s lemma, y = xt for some word t. From
xy = yx it follows that xxt = xtx, and cancelling x from the left gives xt = tx.
If |x| = 0, then x, y ∈ y∗. If |x| > 0, then |xy| = |xxt| > |xt|, so it follows from
xt = tx and the induction hypothesis that x, t ∈ w∗ for some word w, and then also
y = xt ∈ w∗. This completes the induction.

A word is primitive if it is not an nth power of any word for any integer n ≥ 2. A
primitive word p is a primitive root of a word w if w ∈ p+. We prove in Theorem 1.2.4
that every nonempty word has a unique primitive root. The primitive root of w is
denoted by ρ(w).
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Example 1.2.3. Consider words over the alphabet {a, b}. Of the words of length
at most four, only ε, aa, bb, aaa, bbb, aaaa, bbbb, abab, baba are not primitive. The
empty word is not primitive because ε = ε2. The primitive root of abab is ab.

Theorem 1.2.4. Every nonempty word has a unique primitive root.

Proof. First we prove that a nonempty word w has at least one primitive root. Let p
be a shortest word such that w ∈ p∗ (p exists because w ∈ w∗). If p is not primitive,
then p = qn for some word q and n ≥ 2, and then w ∈ q∗, which is a contradiction
because |q| = |p|/n < |p|. Thus p is primitive and therefore a primitive root of w.

Then we prove that any two primitive roots of w must be equal. Let w = pm = qn,
where p and q are primitive and m,n ≥ 1. By symmetry, we can assume that |p| ≤ |q|.
By Levi’s lemma, q = pt for some word t. Then pm = (pt)n = p(tp)n−1t. Cancelling
p from the left gives pm−1 = (tp)n−1t, and then multiplying by p from the right gives
pm = (tp)n. Thus (pt)n = pm = (tp)n, so pt = pref |pt|(p

m) = tp. By Theorem 1.2.2,
p, t ∈ r∗ for some word r. Then also q = pt ∈ r∗. Because p and q are primitive, it
must be p = r = q. This completes the proof.

The following result is often useful.

Lemma 1.2.5. Let p, x, y be words. If p is primitive and pp = xpy, then x = ε or
y = ε.

Proof. Clearly |x| ≤ |xy| = |p|, so by Levi’s lemma, p = xt for some word t. Then
xtxt = xxty and thus txt = xty, and then tx = xt. By Theorem 1.2.2, x, t ∈ w∗ for
some word w. Then also p = xt ∈ w∗. Because p is primitive, it must be p = w, and
thus either x = w and t = ε, or x = ε and t = w. If x = w = p, then y = ε. This
completes the proof.

Words u and v are conjugates if there exist words p, q such that u = pq and
v = qp. In other words, if a1, . . . , an ∈ Σ, then the conjugates of the word a1 · · · an
are the words ai · · · an · a1 · · · ai−1, where i ∈ {1, . . . , n}.

By the next theorem, words x and y are conjugates if and only if xz = zy for
some word z.

Theorem 1.2.6. Let x, y, z ∈ Σ∗. Then xz = zy if and only if x = y = ε or there
exist words p, q ∈ Σ∗ and k ∈ Z≥0 such that x = pq, y = qp, and z = (pq)kp.

Proof. The “if” direction is clear. To prove the “only if” direction, let xz = zy. If one
of x, y is empty, then both of them are, and the claim is true, so let x 6= ε 6= y. We
prove the claim by induction on |z|. The case |z| = 0 is clear. Let |z| > 0. If |z| ≤ |x|,
then x = zt for some word t, and then tz = y, so we can let p = z, q = t, k = 0. If
|x| < |z|, then z = xt for some word t, and then xt = ty. Because |t| = |z| − |x| < |z|,
it follows from the induction hypothesis that x = pq, y = qp, and t = (pq)kp for some
p, q, k, and then z = (pq)k+1p. This completes the induction.

Conjugacy is an equivalence relation. The next result gives the size of the
equivalence classes, which can also be called conjugacy classes.

Theorem 1.2.7. A nonempty word w has exactly |ρ(w)| conjugates.
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Proof. Let ρ(w) = r and w = rn. Let qi = suffi(r) and pi = pref |r|−i(r) for
i ∈ {0, . . . , |r| − 1}. Then the conjugates of r are the words qipi. If qipi = qjpj for
some i ≤ j, then (qipi)

2qi = (qjpj)
2qi and thus qj = qit for some word t. By cancelling

qi and using the equalities piqi = pjqj = r, we get r2 = trpjqi. By Lemma 1.2.5,
t = ε and thus i = j. We have proved that the |r| words qipi are all different. The
conjugates of w are the |r| words (qipi)

n, which are also all different. This completes
the proof.

In the next theorem, we study connections between primitivity and conjugacy.

Theorem 1.2.8. Let u and v be nonempty words.

1. If u and v are conjugates, then u is primitive if and only if v is primitive.

2. If u and v are conjugates, then ρ(u) and ρ(v) are conjugates.

3. If ρ(u) and ρ(v) are conjugates and |u| = |v|, then u and v are conjugates.

Proof. Let u = ρ(u)n.

1. We assume that u = pq is not primitive, that is, n ≥ 2, and show that its
conjugate v = qp is not primitive. It must be p = ρ(u)kp′, q = q′ρ(u)n−k−1 for
some integer k ≥ 0 and words p′, q′ such that ρ(u) = p′q′. Then qp = (q′p′)n is
not primitive. Similarly, if v is not primitive, then u is not primitive.

2. If u and v are conjugates, then u = pq and v = qp for some words p, q, and then
p = ρ(u)kp′, q = q′ρ(u)n−k−1 for some integer k ≥ 0 and words p′, q′ such that
ρ(u) = p′q′. Then v = (q′p′)n and q′p′ is primitive by Claim 1, so ρ(v) = q′p′.

3. If ρ(u) and ρ(v) are conjugates, then ρ(u) = pq and ρ(v) = qp for some words
p, q, and then u = (pq)n and v ∈ (qp)∗. If |u| = |v|, it must be v = (qp)n.

Exercises

1.2.1. Let x, y, z be words and xyx = yxz. Show that x, y, z are powers of a common
word.

1.2.2. Let x and y be words and xxyy = yxyx. Show that x and y are powers of a
common word.

1.2.3. Let x and y be nonempty words. Show that there exist m,n ≥ 1 such that
xm = yn if and only if ρ(x) = ρ(y).

1.2.4. Let p, x, y be words and m,n positive integers. Let p be primitive, pmx = ypn,
and |y| ≤ (m− 1)|p|. Show that x, y ∈ p∗.

1.2.5. Let n ≥ 1. Show that words u and v are conjugates if and only if there exists
a word w such that unw = wvn.

1.2.6.* (Number theory.) Let k, n ≥ 1 and let Σ be a k-ary alphabet. Show that the
number of primitive words in Σn is∑

d|n

µ(n/d)kd,

where µ is the Möbius function. Conclude that if k ≥ 2, then the proportion of words
in Σn that are primitive approaches 1 as n→∞.
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1.3 Palindromes, anagrams and alphabetical order

Many people are familiar with palindromes, anagrams and alphabetical order from a
non-mathematical context. All of these concepts are important in combinatorics on
words. In this section, we define them formally and prove some results related them.

The reverse of a word w = a1 · · · an, where a1, . . . , an ∈ Σ, is wR = an . . . a1.
Clearly (wR)R = w, and if u and v are words, then (uv)R = vRuR. A word w is a
palindrome if wR = w.

Example 1.3.1. Let us consider words over the alphabet {a, . . . , z}. The English
word racecar and the Finnish word saippuakauppias are palindromes.

In the next theorem, we study connections between primitivity, conjugacy, and
reversal.

Theorem 1.3.2. Let u and v be nonempty words.

1. The word u is primitive if and only if uR is primitive.

2. If v = uR, then ρ(v) = ρ(u)R.

3. If ρ(v) = ρ(u)R and |u| = |v|, then v = uR.

4. The word u is a palindrome if and only if ρ(u) is a palindrome.

5. If u and v are conjugates, then uR and vR are conjugates.

Proof. Let u = ρ(u)n.

1. If u is not primitive, that is, n ≥ 2, then uR = (ρ(u)n)R = (ρ(u)R)n is not
primitive. Similarly, if uR is not primitive, then u is not primitive.

2. If v = uR, then v = (ρ(u)n)R = (ρ(u)R)n, and ρ(u)R is primitive by Claim 1,
so ρ(v) = ρ(u)R.

3. If ρ(v) = ρ(u)R, then v = (ρ(u)R)m = (ρ(u)m)R for some number m. If
|u| = |v|, it must be m = n and thus v = uR.

4. If u is a palindrome, then ρ(u) = ρ(uR), and ρ(uR) = ρ(u)R by Claim 2, so
also ρ(u) is a palindrome. If ρ(u) is a palindrome, then uR = (ρ(u)n)R =
(ρ(u)R)n = ρ(u)n = u, so also u is a palindrome.

5. If u = pq and v = qp for some words p, q, then uR = qRpR and vR = pRqR.

The number of occurrences of a factor x in a word w is denoted by |w|x. Words
u, v ∈ Σ∗ are abelian equivalent if |u|a = |v|a for all a ∈ Σ. Abelian equivalent words
can also be called anagrams. In other words, if a1, . . . , an ∈ Σ, then the anagrams of
the word a1 · · · an are the words aσ(1) · · · aσ(n), where σ : {1, . . . , n} → {1, . . . , n} is
a permutation.

Example 1.3.3. If we ignore whitespace, then “combinatorics on words” and “win or
rot in abcd cosmos” are anagrams.

Abelian equivalence is an equivalence relation. The next result gives the size of
the equivalence classes.
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Theorem 1.3.4. Let Σ = {a1, . . . , ak} and w ∈ Σ∗. Let |w| = n and |w|ai = ni for
all i. Then there are

n!

n1! · · ·nk!
words that are abelian equivalent to w.

Proof. If we are contructing a word of length n that is abelian equivalent to w, we
can first choose which n1 of the n positions contain a1, then we can choose which n2
of the remaining n− n1 positions contain a2, and so on. There are a total of(

n

n1

)(
n− n1
n2

)
· · ·
(
n− n1 − · · · − nk−1

nk

)
=

n!

n1! · · ·nk!

ways to make the choices.

Example 1.3.5. The word 0012 has 4!/(2! · 1! · 1!) = 12 anagrams. They are

0012, 0021, 0102, 0120, 0201, 0210, 1002, 1020, 1200, 2001, 2010, 2100.

A relation ≤ on a set S is a total order if the following conditions are satisfied
for all x, y, z ∈ S:

1. x ≤ y or y ≤ x.

2. If x ≤ y and y ≤ x, then x = y.

3. If x ≤ y and y ≤ z, then x ≤ z.

Naturally, we can use the notation x < y if x ≤ y and x 6= y.
Assume that we have fixed a total order ≤ on Σ. The lexicographic order (or

alphabetical order) ≤lex is defined as follows. If u, v ∈ Σ∗, then u ≤lex v if one of the
following holds:

1. u is a prefix of v.

2. u has a prefix xa and v has a prefix xb for some word x and letters a < b.

The radix order ≤rad is defined as follows. If u, v ∈ Σ∗, then u ≤rad v if one of the
following holds:

1. |u| < |v|.

2. |u| = |v| and u ≤lex v.

Theorem 1.3.6. Both ≤lex and ≤rad are total orders on Σ∗.

Proof. For any words u and v, exactly one of the following holds:

1. u = v.

2. u is a proper prefix of v.

3. v is a proper prefix of u.

4. There exist words x, y, z and distinct letters a, b such that u = xay and v = xbz.

Based on this, the three conditions in the definition of a total order can be verified
for both ≤lex and ≤rad. Details are left as an exercise.
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A Lyndon word is a primitive word that is lexicographically smaller than all of
its other conjugates. Lyndon words are not needed in the remaining part of these
lecture notes, but they are used quite often in combinatorics on words. For example,
the following theorem is well-known.

Theorem 1.3.7. Every word w has a unique representation as a product w =
u1 · · ·un, where n ≥ 0, u1, . . . , un are Lyndon words, and un ≤lex · · · ≤lex u1.

Exercises

1.3.1. Find a meaningful sentence in some language that is a palindrome if we ignore
capitalization, whitespace, and punctuation. An example would be “I prefer pi”.
Find also a meaningful anagram of your name or some other phrase (again, ignoring
capitalization, whitespace, and punctuation).

1.3.2. Let Σ be a k-ary alphabet and n ≥ 0. How many palindromes are there in Σn?

1.3.3.* What is the maximum number of palindromic factors a word of length n can
have? (Words with this maximum number of palindromic factors are called rich.)

1.3.4.* Let u and v be words. Show that if u is a palindrome and uv is a palindrome,
then v is a product of two palindromes.

1.3.5. Show that every nonunary word has a primitive anagram. Show that a word
w has a nonprimitive anagram if and only if there exists n ≥ 2 such that n divides
|w|a for all letters a.

1.3.6.* Let k ≥ 1. Words u, v ∈ Σ∗ are k-abelian equivalent if |u|x = |v|x for all
x ∈ Σ∗ such that |x| ≤ k. Let |u|, |v| ≥ k − 1. Show that u and v are k-abelian
equivalent if and only if prefk−1(u) = prefk−1(v) and |u|x = |v|x for all x ∈ Σk.

1.3.7. Prove Theorem 1.3.6.

1.3.8. Let us say that u is the lexicographically previous word before v if u <lex v
and there does not exist a word x such that u <lex x <lex v. The lexicographically
next word after v is defined in a similar way. Does every nonempty word have a
lexicographically previous and next word? What about if we use the radix order?

1.3.9. Let u, v, x, y be words. Show that u ≤lex v if and only if xu ≤lex xv. Show
that if u ≤lex v and u is not a prefix of v, then ux ≤lex vy. Give an example of words
u, v, x such that u ≤lex v but not ux ≤lex vx.

1.3.10. Show that if u and v are words and u 6= ε, then uvu is not a Lyndon word.

1.3.11.* Show that a nonempty word is a Lyndon word if and only if it is the
lexicographically smallest of its nonempty suffixes.

1.3.12. Find the representation mentioned in Theorem 1.3.7 for the word 1010010100,
where 0 ≤lex 1.

1.3.13.* (Programming.) Write a program that, given a word w and a number n,
checks whether w can be written as a product of n palindromes.

13



1.4 Periodicity

Let w = a1 · · · an, where a1, . . . , an ∈ Σ. A positive integer k is a period of w if
ai+k = ai for all i ∈ {1, . . . , n− k}.

Example 1.4.1. Let Σ = {a, b}. The word w = ababaabababaababa has periods 7,
12, 14, 16. Trivially, it also has period k for all k ≥ |w| = 17.

If w is a word and α ∈ Q≥0 is such that α|w| ∈ Z, then we can define a fractional
power wα = wnu, where n = bαc and u is the prefix of w of length (α− n)|w|. Then
wα is called the αth power or α-power of w. Note that if α, β ∈ Q≥0, then often
wα+β 6= wαwβ and (wα)β 6= wαβ even if all the fractional powers here are defined. For
example, if a and b are distinct letters, then (ab)1/2(ab)1/2 = aa 6= ab = (ab)1/2+1/2

and ((ab)1/2)2 = aa 6= ab = (ab)(1/2)·2.

Example 1.4.2. Let us consider words over the alphabet {a, . . . , z}. The French
word entente = (ent)7/3 is a (7/3)-power. The Finnish word taltalta = (tal)8/3 is an
(8/3)-power.

A nonempty word u is a border of a word w if u is a proper prefix and a proper
suffix of w.

Example 1.4.3. The word w of Example 1.4.1 has borders a, aba, ababa, ababaababa.

In the next theorem we see that periods, borders and fractional powers are closely
related.

Theorem 1.4.4. Let w be a word and k ≥ 1. The following are equivalent:

1. w has period k.

2. w is a fractional power of a word of length k.

3. w = u|w|/k for some word u of length k, and if k ≤ |w|, then u = prefk(w).

4. k ≥ |w| or w has a border of length |w| − k.

Proof. Left as an exercise.

Given two positive integers k and l, we are interested in words that have periods
k and l. Every word that has period gcd(k, l) certainly has periods k and l, but if we
exclude these words, then there are only finitely many words with periods k and l.
We want to find out how long such words can be. We start with an example before
giving the general answer.

Example 1.4.5. Let us try to find a word of length 10 with periods 4 and 7. Let
u = a1 · · · a10, where a1, . . . , a10 ∈ Σ. If u has periods 4 and 7, then

a4 = a8 = a1 = a5 = a9 = a2 = a6 = a10 = a3 = a7,

so u = a101 , that is, u is unary.
On the other hand, we can find a nonunary word of length 9 with periods 4 and

7. Let v = b1 · · · b9, where b1, . . . , b9 ∈ Σ. If v has periods 4 and 7, then

b4 = b8 = b1 = b5 = b9 = b2 = b6 and b3 = b7,

so v = aabaaabaa for some a, b ∈ Σ. If a 6= b, then v does not have period 1, but it
has periods 4 and 7.
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The following theorem, or alternatively the reformulation in Corollary 1.4.7, is
known as the periodicity theorem of Fine and Wilf. We give two different proofs.

Theorem 1.4.6. Let u and v be nonempty words. If a power of u and a power of
v have a common prefix of length |uv| − gcd(|u|, |v|), then u and v are powers of a
common word of length gcd(|u|, |v|).

Proof. The first proof is related to example 1.4.5. Let w be the common prefix,
d = gcd(|u|, |v|), k = |u|/d, l = |v|/d, and m = |w|/d = k+ l− 1. Then we can write
u = u1 · · ·uk, v = v1 · · · vl, and w = w1 · · ·wm, where all ui, vi, wi are words of length
d.

Let

f : {0, . . . ,m} → {0, . . . ,m}, f(n) =

{
n+ k if n < l

n− l if n ≥ l.

If n is such that n, f(n) > 0, then wn = wf(n). Let n0 = 0 and ni+1 = f(ni) for
all i ≥ 0. If we can prove that {n1, . . . , nm} = {1, . . . ,m}, then it follows that
w1 = · · · = wm and thus w ∈ w∗1, and then u, v ∈ w∗1, which proves the theorem.

For all i, j, i < j, there are integers a, b ≥ 0 such that nj = ni + ak − bl and
a + b = j − i. If ni = nj , then ak − bl = 0, and then a ≥ l and b ≥ k, so
j − i ≥ k + l = m + 1. It follows that n0, . . . , nm are pairwise distinct, and thus
{n1, . . . , nm} = {1, . . . ,m}. This completes the first proof.

Proof. The second proof requires some polynomial algebra. Let us assume that
the alphabet is a subset of Z (we can always rename the letters, so this is not a
restriction). For any word t = a0 · · · an, where a0, . . . , an are letters, we define a
polynomial

Pt =
n∑
i=0

aiX
i ∈ Z[X].

Then it is easy to check that

Ptm =
1−Xm|t|

1−X |t|
· Pt

for all m. Let d = gcd(|u|, |v|). Then 1−X |u| = (1−Xd)Q and 1−X |v| = (1−Xd)R
for some polynomials Q,R. We have

Pu|v| − Pv|u| =
1−X |u||v|

1−X |u|
· Pu −

1−X |u||v|

1−X |v|
· Pv =

1−X |u||v|

(1−Xd)QR
· (RPu −QPv).

By the assumption about the common prefix, Pu|v| − Pv|u| is divisible by X |uv|−d, so
RPu −QPv must be divisible by X |uv|−d. But the degree of RPu −QPv is at most
|uv| − d− 1, so RPu −QPv = 0. It follows that Pu|v| − Pv|u| = 0 and thus u|v| = v|u|.
The claim follows quite easily.

Corollary 1.4.7. Let w be a word with periods k and l. If |w| ≥ k + l − gcd(k, l),
then w has period gcd(k, l).

Proof. The word w is a prefix of a power of prefk(w) and of a power of pref l(w). By
Theorem 1.4.6, w is a prefix of a power of a word of length gcd(k, l), and therefore it
has period gcd(k, l).
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The bound |w| ≥ k + l − gcd(k, l) is optimal in the sense that if neither of k, l
divides the other, then there exists a word of length k + l − gcd(k, l)− 1 that has
periods k and l but not period gcd(k, l). This can be proved by using similar ideas,
and it is often stated as part of the theorem of Fine and Wilf.

The next two results are sometimes useful.

Lemma 1.4.8. Let x and y be words and y 6= ε. If x is a prefix of yx, then x is a
fractional power of y.

Proof. The case x = ε is trivial. If x 6= ε, then yx has a border x, so by Theorem 1.4.4,
yx is a fractional power of y. Then also x is a fractional power of y.

Lemma 1.4.9. Let x and y be words and m,n ≥ 1. If one of xmy and ynx is a
prefix of the other, then x and y are powers of a common word.

Proof. The word x is a prefix of ynx, so x is a fractional power of yn by Lemma 1.4.8.
It follows that ynx is a fractional power of y. Similarly, xmy is a fractional power of
x. This means that a power of x and a power of y have a common prefix of length

min{|xmy|, |ynx|} ≥ |xy|,

so x and y are powers of a common word by Theorem 1.4.6.

Exercises

1.4.1. Find some words that have a meaning in some natural language and are
α-powers for some rational number α ≥ 2.

1.4.2. Show that a word and its reverse have the same periods. Show that conjugates
do not necessarily have the same periods.

1.4.3. Prove Theorem 1.4.4.

1.4.4. Show that if a word w has a border, then its shortest border is of length at
most |w|/2.

1.4.5. What is the maximum length of a nonunary word that has periods 5 and 8?
Give an example of such a word. What if the word has to be nonbinary?

1.4.6. Let u, v, w be words. Show that if w2 = uvuvu, then u, v, w ∈ r∗ for some word
r. Give an example of nonempty words u, v, w such that w2 = uvu but ρ(u) 6= ρ(v).

1.4.7.* Prove the optimality result that was mentioned after Corollary 1.4.7.

1.4.8.* Let w be a word and k its smallest period. Show that w is nonprimitive if
and only if k divides |w| and k < |w|.

1.4.9. Let x, y be words. Show that if xy and yx have a common prefix of length
|x|+ |y| − gcd(|x|, |y|), then xy = yx.
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Chapter 2

Equations and codes

2.1 Word equations

We are interested in finding words that satisfy a given equality. For example, which
words x satisfy xaxbab = abaxbx, where a and b are letters, or which triples of words
x, y, z satisfy xyz = zyx? To help us study these kinds of questions, we give some
definitions. Most importantly, we give a formal definition for a word equation and its
solutions.

In this section, let Σ be an alphabet of constants and Ξ an alphabet of variables.
A morphism h : (Ξ ∪ Σ)∗ → Σ∗ is constant-preserving if h(a) = a for all a ∈ Σ,
and it is periodic if there exists a word w such that h(X) ∈ w∗ for all X ∈ Ξ. If
Ξ = {X1, . . . , Xn}, then by the morphism

(X1, . . . , Xn) 7→ (w1, . . . , wn)

we mean the unique constant-preserving morphism h : (Ξ ∪ Σ)∗ → Σ∗ such that
h(Xi) = wi for all i.

A word equation is a pair of words (U, V ) ∈ (Ξ ∪ Σ)∗ × (Ξ ∪ Σ)∗. A solution
of this equation is a constant-preserving morphism h such that h(U) = h(V ). An
equation (U, V ) is constant-free if U, V ∈ Ξ∗, and it is trivial if U = V . If n = |Ξ|,
then (U, V ) can be called an n-variable equation, and it can be called an equation
over Ξ. The words U and V can be called the left-hand side and the right-hand side
of (U, V ), respectively.

Example 2.1.1. Let Ξ = {X} and Σ = {a, b}. Consider the word equation
(XaXbab, abaXbX). Let f be the morphism (X) 7→ (ε) and let g be the morphism
(X) 7→ (ab). These two morphisms are solutions of the equation:

f(XaXbab) = f(X)af(X)bab = abab = abaf(X)bf(X) = f(abaXbX),

g(XaXbab) = g(X)ag(X)bab = abaabbab = abag(X)bg(X) = g(abaXbX).

It can be shown that the equation has no other solutions (see Example 2.2.7).

Example 2.1.2. Let Ξ = {X,Y, Z} and Σ = {a, b}. The constant-free word equation
(XY Z,ZY X) has infinitely many solutions (see Example 2.2.2), for example the
following two:

(X,Y, Z) 7→ (a, b, aba), (X,Y, Z) 7→ (ab, (ab)2, (ab)3).

The first one is nonperiodic and the second one is periodic.
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A system of equations is a set of equations. A morphism is a solution of a system
if it is a solution of every equation in the system. A system of size two can be called
a pair of equations. Two equations or systems are equivalent if they have the same
set of solutions.

Example 2.1.3. Let Ξ = {X,Y, Z} and Σ = {a, b}. The pair of equations
{(XY Z,ZY X), (XY Y Z,ZY Y X)} has the solution

(X,Y, Z) 7→ (a, b, a).

The pair of equations has infinitely many other solutions as well.

Let U, V, S, T ∈ (Ξ ∪ Σ)∗. The equations (U, V ) and (V,U) are equivalent. This
means that we can always swap the left-hand side and the right-hand side of an
equation. The equations (SUT, SV T ) and (U, V ) are also equivalent. This means
that we can always cancel common prefixes and common suffixes of the left-hand
side and the right-hand side of an equation.

We can turn some earlier results into results about word equations. In particular,
we can solve two simple constant-free equations: The commutation equation (XY, Y X)
and the conjugacy equation (XZ,ZY ).

Theorem 2.1.4. Let Ξ = {X,Y }. The solutions of the equation (XY, Y X) are the
morphisms

(X,Y ) 7→ (pi, pj),

where p ∈ Σ∗ and i, j ≥ 0.

Proof. Follows from Theorem 1.2.2. To be more specific, if h is a solution of (XY, Y X),
then h(X)h(Y ) = h(Y )h(X), so h(X) = pi and h(Y ) = pj for some p ∈ Σ∗ and
i, j ≥ 0 by Theorem 1.2.2. On the other hand, if g is a morphism, g(X) = pi, and
g(Y ) = pj , then g(XY ) = pi+j = g(Y X), so g is a solution (XY, Y X).

Theorem 2.1.5. Let Ξ = {X,Y, Z}. The solutions of the equation (XZ,ZY ) are
the morphisms

(X,Y, Z) 7→ (pq, qp, (pq)kp), (X,Y, Z) 7→ (ε, ε, p),

where p, q ∈ Σ∗ and k ≥ 0.

Proof. Follows from Theorem 1.2.6.

Theorem 2.1.6. Let X,Y ∈ Ξ, U, V ∈ Ξ∗ and m,n ≥ 1. If h is a solution of the
equation (XmY U, Y nXV ), then h(X) and h(Y ) are powers of a common word.

Proof. Follows from Lemma 1.4.9.

The next theorem is a generalization of Theorem 2.1.4. It is sometimes stated in
the following form: If two words satisfy a nontrivial relation, then they are powers of
a common word.

Theorem 2.1.7. A nontrivial constant-free two-variable word equation has only
periodic solutions.
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Proof. Given a nontrivial constant-free equation over {X,Y }, we can cancel common
prefixes and maybe swap the sides to either get an equation of the form (W, ε),
where W ∈ {X,Y }+, or of the form (XU, Y V ), where U, V ∈ {X,Y }∗. The former
clearly has only periodic solutions, and the latter is equivalent to the equation
(XUXY, Y V XY ), which has only periodic solutions by Theorem 2.1.6.

Example 2.1.8. Consider the equation (X3, Y 2) over {X,Y }. If h is a solution
of this equation, then h(X) = pm and h(Y ) = pn for some word p and numbers
m,n ≥ 0. But not all such morphisms h are solutions: It must be

p3m = h(X3) = h(Y 2) = p2n,

which is equivalent to 3m = 2n (if p 6= ε), so the solutions are exactly the morphisms

(X,Y ) 7→ (pm, pn), 3m = 2n,

or equivalently, the morphisms

(X,Y ) 7→ (p2k, p3k), k ≥ 0.

We conclude this section by stating a result sometimes known as the theorem of
Lyndon and Schützenberger.

Theorem 2.1.9. Let Ξ = {X,Y, Z} and let k,m, n ≥ 2 be integers. The word
equation (Xk, Y mZn) has only periodic solutions.

Exercises

2.1.1. Let Ξ = {X,Y }. Find all solutions of the word equation (XY 12, Y 2X5).

2.1.2. Let Ξ = {X,Y }. Find all solutions of the word equation (X2, Y Z).

2.1.3. Let Ξ = {X,Y, Z}. Find all solutions of the word equation (XY ZY, Y 2XZ).

2.1.4. Let Ξ = {S, T,X, Y }. Find a solution h for the equation (ST 3S,XY 3X) such
that h(SX) 6= h(XS).

2.1.5. Let Ξ = {S, T,X, Y }. Find a solution h for the equation (ST 4S,XY 4X) such
that h(SX) 6= h(XS).

2.1.6. Give an example of a word equation or a system of word equations that has
at least 2020 solutions but not infinitely many. If you are feeling competitive, you
can try to give an example that is as short as possible. (The length of an equation
(U, V ) is defined to be |UV |, and the length of a system is defined to be the sum of
the lengths of the equations in the system.)

2.1.7. Let Ξ = {X,Y, Z} and let k,m ≥ 2 be integers. Find a nonperiodic solution
for the word equation (Xk, Y mZ).

2.1.8.* Prove Theorem 2.1.9 in the case k = m = n.
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2.2 Solving word equations

In this section, we give many examples of solving a word equation, that is, finding
all of its solutions. These examples illustrate different techniques that can be used in
some particular cases. We do not give any general method that would work for all
equations. In fact, even checking whether a given word equation has at least one
solution is very complicated (see Remark 2.2.9).

First, we solve two constant-free three-variable equations.

Example 2.2.1. Let Ξ = {X,Y, Z}. The solutions of the equation (XY Z,ZXY )
are the morphisms

(X,Y, Z) 7→ ((pq)ip, q(pq)j , (pq)k), (X,Y, Z) 7→ (ε, ε, p),

where p, q ∈ Σ∗ and i, j, k ≥ 0. It is easy to see that all these morphisms are solutions.
To see that there are no other solutions, let x, y, z be words such that xyz = zxy.
Then xy and z commute, so xy = rm and z = rk for some word r and integers
m, k ≥ 0. If m ≥ 1, then there exist words p, q and integers i, j such that r = pq,
m = i+ j + 1, x = rip, y = qrj . If m = 0, then x = y = ε.

Example 2.2.2. Let Ξ = {X,Y, Z}. The solutions of the equation (XY Z,ZY X)
are the morphisms

(X,Y, Z) 7→ ((pq)ip, q(pq)j , (pq)kp), (X,Y, Z) 7→ (p, ε, ε), (X,Y, Z) 7→ (ε, ε, p),

where p, q ∈ Σ∗ and i, j, k ≥ 0. It is easy to see that all these morphisms are
solutions. To see that there are no other solutions, let x, y, z be words such that
xyz = zyx. Then xyzy = zyxy, so xy = rm and zy = rn for some word r and
integers m,n ≥ 0. If m,n ≥ 1, then there exist words p, q and integers i, j, k such
that r = pq, m = i + j + 1, n = k + j + 1, x = rip, y = qrj , z = rkp. If m = 0 or
n = 0, then x = y = ε or z = y = ε.

Next, we give examples of various length arguments.

Example 2.2.3. Let Ξ = {X,Y, Z} and consider the equation (XY ZY, Y XY Z).
If x, y, z ∈ Σ∗ and xyzy = yxyz, then xy = pref |xy|(xyzy) = pref |xy|(yxyz) = yx.
Thus x and y are powers of a common word. Similarly, zy = yz and y and z are
powers of a common word. So if y 6= ε, then x, y, z are powers of a common word.
It follows that the only nonperiodic solutions of the equation are the morphisms
(X,Y, Z) 7→ (p, ε, q), where p, q ∈ Σ∗ and pq 6= qp.

Example 2.2.4. Let Ξ = {X,Y, Z} and consider the equation (XZX,Y 4Z). If
x, y, z ∈ Σ∗ and xzx = y4z, then |xzx| = |y4z| and thus 2|x| = 4|y|. Then x = y2

and y2zy2 = y4z, and thus y and z are powers of a common word, and also x is a
power of the same word. It follows that the equation has only periodic solutions.

Example 2.2.5. Let Ξ = {X,Y, Z} and consider the equation (X2, Y Z2Y ). If
x, y, z ∈ Σ∗ and x2 = yz2y, then |x| = |x2|/2 = |yz2y|/2 = |yz|. Then x = yz = zy
and thus x, y, z are powers of a common word. It follows that the equation has only
periodic solutions.

Next, we consider some one-variable equations.
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Example 2.2.6. Let Ξ = {X}, Σ = {a, b}, u ∈ Σ∗, v ∈ Σ+, and uv primitive. The
solutions of the word equation (Xvu, uvX) are the morphisms

(X) 7→ ((uv)iu),

where i ≥ 0. It is easy to see that these are solutions. To see that there are no other
solutions, let x be a word such that xvu = uvx. By Example 2.2.2,

(x, v, u) = ((pq)ip, q(pq)j , (pq)kp)

for some p, q ∈ Σ∗ and i, j, k ≥ 0. By the primitivity of uv, j = k = 0.
It is known that every nontrivial one-variable equation with infinitely many

solutions is equivalent to an equation of the form (Xvu, uvX).

Example 2.2.7. Let Ξ = {X} and Σ = {a, b}. The solutions of the word equation
(XaXbab, abaXbX) are the morphisms

(X) 7→ (ε), (X) 7→ (ab).

It is easy to see that these are solutions. To see that there are no other solutions, let
x be a nonempty word such that xaxbab = abaxbx. By Lemma 1.4.8, x must be a
fractional power of aba, and x must end in b, so x = (aba)nab for some integer n ≥ 0.
If n ≥ 1, then x ends in aab, which is a contradiction, because xaxbab = abaxbx ends
in bab.

Using similar ideas, it can be shown that the equation

(XaXbXaabbabaXbabaabbab, abaabbabaXbabaabbXaXbX)

has exactly three solutions

(X) 7→ (ε), (X) 7→ (ab), (X) 7→ (abaabbab).

More specifically, if (X) 7→ (x) is a solution, then x must be a fractional power
of abaabbaba, and if |x| ≥ 9, then x must end in babaabbab. No fractional power
of abaabbaba ends in babaabbab, so |x| ≤ 8. Checking the nine proper prefixes of
abaabbaba gives the three solutions mentioned above.

It is known that every one-variable equation with only finitely many solutions
has at most three solutions.

If the alphabet of constants is unary, then word equations are essentially linear
Diophantine equations.

Example 2.2.8. Let Ξ = {X,Y, Z} and Σ = {a}. The solutions of the word
equation (Xa2Y 3, Z2) are the morphisms

(X,Y, Z) 7→ (a2i, a2j , ai+3j+1), (X,Y, Z) 7→ (a2i+1, a2j+1, ai+3j+3),

where i, j ≥ 0. Note that for x, y, z ∈ a∗, xa2y3 = z2 is equivalent to

|x|+ 3|y|+ 2 = 2|z|.

We see that |x| and |y| must have the same parity. This leads to the above solutions.

Remark 2.2.9. Mostly, algorithmic questions are not considered in these lecture
notes, but let us make a remark about the following three algorithmic decision
problems:
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1. Given a morphism h : Ξ∗ → Σ∗, does there exist two distinct words U, V ∈ Ξ∗

such that h(U) = h(V )? In other words, is h noninjective?

2. Given words U, V ∈ (Ξ ∪ Σ)∗, does there exist a constant-preserving morphism
h : (Ξ ∪ Σ)∗ → Σ∗ such that h(U) = h(V )? In other words, does the word
equation (U, V ) have a solution?

3. Given two morphisms f, g : Ξ∗ → Σ∗, does there exist a word W ∈ Ξ+ such
that f(W ) = g(W )?

These problems seem similar, but the first one is easy, the second one is difficult, and
the third one is impossible:

1. The first problem is closely related to codes, which are studied in Section 2.3.
It can be solved efficiently by the Sardinas–Patterson algorithm.

2. Using terminology of complexity theory, it is known that the second problem
is NP-hard and in PSPACE, and it has been conjectured that it is in NP (and
therefore NP-complete).

3. The third problem is called the Post correspondence problem (or PCP) and it
is known to be undecidable.

Exercises

2.2.1. Let Ξ = {X,Y } and Σ = {a, b}. Solve the equation (XaY, Y aX).

2.2.2. Let Ξ = {S, T,X, Y }. Solve the equation (S2XY T, T 2Y XS).

2.2.3. Let Ξ = {X,Y, Z}. Solve the equation (XZX,Y 2).

2.2.4. Let Ξ = {X,Y, Z, T} and Σ = {a, b}. Solve the equation

(XY ZTZY XTa,ZY XTaXY ZT ).

2.2.5. Let Ξ = {X} and Σ = {a, b}. Solve the equation (XXbaaba, aabaXbX).

2.2.6. Let Ξ = {X,Y, Z} and Σ = {a}. Solve the pair of equations

{(XZY,Z2), (XaY aX,ZaZ)}.

Because Σ is unary, this is essentially linear algebra.

2.2.7.* Let Ξ = {X,Y, Z}. Solve the equation (X2Y 2Z2, (XY Z)2).

2.2.8.* Show that if a one-variable equation has the solutions (X) 7→ (am) and
(X) 7→ (an), where a ∈ Σ and m 6= n, then it has the solution (X) 7→ (ak) for all
k ≥ 0.

2.2.9.* Let a, b ∈ Σ, a 6= b, and U, V, U ′, V ′ ∈ (Ξ ∪ Σ)∗. Show that the pair of
equations {(U, V ), (U ′, V ′)} is equivalent to the equation (UaU ′UbU ′, V aV ′V bV ′).
Conclude that every finite system of equations is equivalent to a single equation
(assuming that Σ is not unary). Give an example of a pair of constant-free equations
that is not equivalent to any single constant-free equation.
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2.3 Free monoids and codes

Let M be a nonempty set and ∗ a binary operation that is defined on all pairs of
elements of M . Then (M, ∗) is a monoid if the following conditions are satisfied:

1. x ∗ y ∈M for all x, y ∈M .

2. (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈M .

3. There exists e ∈M such that e ∗ x = x ∗ e = x for all x ∈M .

The element e is called the neutral element. It is unique, because if e and e′ are
neutral elements, then e = e ∗ e′ = e′. If L ⊆M and (L, ∗) and (M, ∗) are monoids
with the same neutral element, then (L, ∗) is a submonoid of (M, ∗).

Remark 2.3.1. A technical remark about the definitions: A binary operation on a
set S is a function S×S → S. The image of a pair (x, y) ∈ S×S under ∗ is denoted
by x ∗ y. In the above definition of a monoid, ∗ can be a binary operation on M , but
it can also be a binary operation on a superset of M . This allows us to use the same
operation for many different sets M .

Example 2.3.2. Here are some examples of monoids:

1. Every group is a monoid.

2. If (R,+, ·) is a ring, then (R, ·) is a monoid.

3. (Z≥0,+) is a monoid.

4. Let P(S) the set of subsets of a set S. Then (P(S),∪) and (P(S),∩) are
monoids. The neutral elements are ∅ and S, respectively.

If Σ is an alphabet, then (Σ∗, ·) is a monoid and ε is the neutral element. From
now on, we concentrate on the monoid (Σ∗, ·) and its submonoids. Because the
binary operation is always concatenation, we can talk about a monoid M instead of
a monoid (M, ·).

Theorem 2.3.3. Let L ⊆ Σ∗. The following are equivalent:

1. L is a submonoid of Σ∗.

2. L∗ = L.

3. L2 ∪ {ε} ⊆ L.

Proof. 1 =⇒ 2: Clearly L ⊆ L∗. Every element of L∗ is ε, an element of L, or a
product of two or more elements of L. If L is a submonoid, then all of these must be
in L, so L∗ ⊆ L.

2 =⇒ 3: Clearly L2 ∪ {ε} ⊆ L∗.
3 =⇒ 1: The first condition of the definition of a monoid is satisfied because

L2 ⊆ L, the second one because L ⊆ Σ∗, and the third one because ε ∈ L. Thus L is
a monoid. It is a submonoid of Σ∗ because L ⊆ Σ∗ and ε ∈ L.

Example 2.3.4. Let L ⊆ Σ∗. The set L∗ is a monoid because (L∗)∗ = L∗.
Let Σ = {a, b}. The set M = {w ∈ Σ∗ | |w|a ≡ 0 (mod 2)} is a monoid because

ε ∈M and uv ∈M for all u, v ∈M .
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A subset G of a monoid M ⊆ Σ∗ is a generating set of M if G∗ = M . A generating
set of M is minimal if it does not have a proper subset that is a generating set of M .
By the next theorem, every monoid M ⊆ Σ∗ has a unique minimal generating set,
and it consists of those nonempty words in M that cannot be written as a product
of two nonempty words in M .

Theorem 2.3.5. A submonoid M of Σ∗ has the unique minimal generating set

G = (M r {ε}) r (M r {ε})2.

Proof. First, we prove that G is a generating set of M . Clearly G∗ ⊆ M , so it is
sufficient to prove that M ∩ Σn ⊆ G∗ for all n ≥ 0, which can be done by induction
as follows. The case n = 0 is clear. Let n ≥ 1. Let x ∈ M ∩ Σn. If x ∈ G, then
x ∈ G∗. If x /∈ G, then x ∈ (M r {ε})2, so x = yz for some y, z ∈M r {ε}. Because
|y|, |z| < |x| = n, it follows from the induction hypothesis that y, z ∈ G∗ and thus
x ∈ G∗. We have proved that M ∩ Σn ⊆ G∗, which completes the induction.

Then, we prove that every generating set H of M contains G as a subset and
therefore G is the unique minimal generating set. If x ∈ M r H r {ε}, then
x = y1 · · · yn for some n ≥ 2 and y1, . . . , yn ∈ Hr{ε}. But then y1, y2 · · · yn ∈Mr{ε}
and thus x ∈ (M r {ε})2, so x /∈ G. This shows that G ⊆ H.

Example 2.3.6. The minimal generating set of the monoid M of Example 2.3.4 is
ab∗a ∪ {b}.

If M ⊆ Σ∗ is a monoid and S ⊆ M , then an S-factorization of x ∈ M is a
sequence (x1, . . . , xn) of elements of S such that x = x1 · · ·xn. Then S∗ is the set of
elements that have at least one S-factorization.

A subset C of a monoid M ⊆ Σ∗ is a code if every element of C∗ has a unique
C-factorization. A monoid M ⊆ Σ∗ is free if it has a generating set that is a code.

Example 2.3.7. An alphabet Σ is a code and therefore Σ∗ is a free monoid. Also
Σn is a code for all n ≥ 1. The free monoid (Σn)∗ consists of the words whose length
is divisible by n. The empty set is a code and ∅∗ = {ε} is a free monoid. The empty
word can never be in a code, because (ε) and (ε, ε) are distinct {ε}-factorizations of
the same element.

Example 2.3.8. The set C = {a, bba, bbaab} is a code. To see this, let (x1, . . . , xm)
and (y1, . . . , yn) be C-factorizations of the same element and |x1| < |y1|. Then it
must be x1 = bba and y1 = bbaab, and then x2 = a and x3 ∈ {bba, bbaab}. But then
there is no possible value for y2, which is a contradiction.

It follows from the next theorem that a submonoid of Σ∗ is free if and only if its
minimal generating set is a code.

Theorem 2.3.9. If C is a code, then C is the minimal generating set of C∗.

Proof. Clearly C is a generating set of C∗. Let B ⊆ C be a generating set of C∗. If
x ∈ C, then x = y1 · · · yn for some n ≥ 1 and y1, . . . , yn ∈ B. If n ≥ 2, then x has
two distinct C-factorizations (x) and (y1, . . . , yn), which is a contradiction. Thus
n = 1 and x ∈ B. We have shown that C ⊆ B. This proves that C is a minimal
generating set.

A set P ⊆ Σ+ is a prefix code (suffix code) if there does not exist words u, v ∈ P
such that u is a proper prefix (proper suffix, respectively) of v.
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Theorem 2.3.10. Prefix codes and suffix codes are codes.

Proof. Let P ⊆ Σ∗ be a prefix code. Let (x1, . . . , xm) and (y1, . . . , yn) be P -
factorizations of the same word w. If m = 0 or n = 0, then w = ε and m = n = 0, so
the factorizations are equal. Consider the case m,n > 0. If |x1| 6= |y1|, then one of
x1, y1 is a proper prefix of the other, which is a contradiction. Therefore |x1| = |y1|
and thus x1 = y1. It follows that (x2, . . . , xm) and (y2, . . . , yn) are P -factorizations
of the same word. Continuing the same way, we see that m = n and xi = yi for all
i. This shows that no word has two distinct P -factorizations, so P is a code. The
claim about suffix codes can be proved in a similar way.

Example 2.3.11. Let Σ = {a, b}. The set {ab, aab} is a prefix code, so {ab, aab}∗
is a free monoid. The set {ab, aab, aabab} is not a code, because aab · ab = aabab,
but the monoid {ab, aab, aabab}∗ is free, because {ab, aab, aabab}∗ = {ab, aab}∗.

Example 2.3.12. The monoid M of Example 2.3.4 is free, because its minimal
generating set ab∗a ∪ {b} is a prefix code.

A submonoid M of Σ∗ is stable if x, z, xy, yz ∈M implies y ∈M .

Theorem 2.3.13. A submonoid of Σ∗ is free if and only if it is stable.

Proof. First, let M be a free submonoid of Σ∗. Then M = C∗ for some code
C. If x, z, xy, yz ∈ M , then x = x1 · · ·xk, z = z1 · · · zl, xy = u1 · · ·um, yz =
v1 · · · vn, where k, l,m, n ≥ 0 and xi, yi, ui, vi ∈ C for all i. It follows that xyz has
C-factorizations (x1, · · · , xk, v1, . . . , vn) and (u1, . . . , um, z1, . . . , zl), which must be
equal, because C is a code. Then k ≤ m and xi = ui for all i ∈ {1, . . . , k}, and then
y = uk+1 · · ·um ∈M . This shows that M is stable.

Then, let M be a stable submonoid of Σ∗ and let G be the minimal generating set
of M . We assume that some element has two distinct G-factorizations (x1, . . . , xm)
and (z1, . . . , zn) and derive a contradiction. We can assume that x1 6= z1 (otherwise,
consider the factorizations (x2, . . . , xm) and (z2, . . . , zn)), and by symmetry, we can
assume that |x1| < |z1|. Then z1 = x1y for some word y 6= ε. If we let x = x1 and
z = z2 · · · zn, then x, z, xy, yz ∈M , and thus y ∈M because M is stable. But then
z1 ∈ (M r {ε})2, which is a contradiction by Theorem 2.3.5. Therefore, G is a code
and M is free.

A submonoid M of Σ∗ is right unitary if x, xy ∈ M implies y ∈ M , and left
unitary if z, yz ∈M implies y ∈M . If a monoid is right unitary or left unitary, then
it is clearly stable and therefore free.

Example 2.3.14. Another way to see that the monoid M of Example 2.3.4 is free
is to notice that it is right unitary.

There is a close connection between codes and injective morphisms.

Theorem 2.3.15. Let Σ and Γ be alphabets and let h : Σ∗ → Γ∗ be a morphism that
is injective on Σ. Then h is injective if and only if h(Σ) is a code.

Proof. The language h(Σ) is not a code if and only if some word in Γ∗ has two distinct
h(Σ)-factorizations (h(a1), . . . , h(am)) and (h(b1), . . . , h(bn)), where all ai, bi ∈ Σ.
Because h is injective on Σ, these factorizations being distinct is equivalent to
a1 · · · am 6= b1 · · · bn. Thus h(Σ) is not a code if and only if there exists u, v ∈ Σ∗

such that h(u) = h(v) and u 6= v. This last condition is equivalent to h being
noninjective.
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The next example collects together many things we have proved, and gives a
characterization of two-element codes.

Example 2.3.16. Let x, y ∈ Σ+ and x 6= y. The following are equivalent:

1. ρ(x) = ρ(y).

2. x, y ∈ w∗ for some word w.

3. xy = yx.

4. x|y| = y|x|.

5. xm = yn for some integers m,n ≥ 1.

6. (X,Y ) 7→ (x, y) is a solution of a nontrivial constant-free equation on {X,Y }.

7. The morphism h : {0, 1}∗ → Σ∗, h(0) = x, h(1) = y, is not injective.

8. {x, y} is not a code.

Most of the equivalences follow directly from results we have proved. Checking the
details is left as an exercise. What about the case x = y or x = ε or y = ε?

Exercises

2.3.1. Give an example of two monoids M,N such that M ∪ N = {a, b}∗ and
M ∩N = {ε}.

2.3.2. Check that the following sets are monoids and find their minimal generating
sets: {a, ab}∗ ∩ {a, ba}∗, {w ∈ {a, b}∗ | |w| ≥ 3} ∪ {ε}.

2.3.3. Is {a, ab, aba, abb}∗ a free monoid? Is {ab, aba, baab}∗ a free monoid? Is
{a, ab, bba}∗ a free monoid?

2.3.4. Show that the set {w ∈ {a, b}∗ | |w|ab ≥ 1}∪{ε} is a monoid. Find its minimal
generating set. Is this monoid free?

2.3.5. Show that if C is a code, then {xR | x ∈ C} is a code.

2.3.6. If C and D are codes, then is CD necessarily a code? If C and D are prefix
codes, then is CD necessarily a prefix code?

2.3.7. Let Σ = {a, b}, α, β ∈ R, and f : Σ∗ → R, f(w) = α|w|a + β|w|b. Show that
{w ∈ Σ∗ | f(w) = 0} is a free monoid.

2.3.8. Prove that a submonoid of Σ∗ is right (left) unitary if and only if its minimal
generating set is a prefix code (suffix code, respectively).

2.3.9. Answer the question at the end of Example 2.3.16.

2.3.10.* Show that every submonoid of a∗ has a finite generating set.
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2.4 Rank and defect

In linear algebra, there exist the powerful notions of dimension and rank. If the
rank of a set S of vectors is denoted by r(S), then we can prove, for example, the
following:

1. If S is linearly independent, then r(S) = |S|.

2. If S is not linearly independent, then r(S) < |S|.

3. If the vectors in S satisfy two independent linear relations, then r(S) ≤ |S| − 2.

4. The vectors in S can satisfy at most |S| independent linear relations.

In combinatorics on words, we can define the rank of a language, and then prove
analogous versions of the first two statements above, but not of the other two. So
words satisfy some “dimension properties”, but they are much weaker than those of
vectors. We need the following lemma before we can give the definition.

Lemma 2.4.1. Let F be a family of submonoids of Σ∗ and let M be the intersection
of the monoids in F . Then M is a monoid. Moreover, if every monoid in F is free,
then M is free.

Proof. Follows from Theorems 2.3.3 and 2.3.13.

The free rank of a language L, denoted by rf(L), is the size of the minimal
generating set of the smallest free monoid containing L (the smallest free monoid
containing L is the intersection of all free monoids containing L, which is a free
monoid by Theorem 2.4.1). If L is a code, then clearly rf(L) = |L|.

We concentrate mostly on the free rank, but there are also other rank functions.
For example, the combinatorial rank of a language L, denoted by rc(L), is the size
of a smallest language K such that L ∈ K∗. Clearly, rc(L) ≤ rf(L) and rc(L) ≤ |Σ|,
where Σ is the alphabet.

Example 2.4.2. If L = ∅ or L = {ε}, then rc(L) = rf(L) = 0. Otherwise, if L ⊆ w∗
for some word w, then rc(L) = rf(L) = 1. In all other cases, rf(L) ≥ rc(L) ≥ 2.

Example 2.4.3. Consider the language L = {a, bba, abbaab, bbaabbba}. Clearly
rc(L) = 2. Note that L is not a code, because a · bbaabbba = abbaab · bba. If
L ⊆ C∗, where C is a code, then it must be bbaab ∈ C∗ by Theorem 2.3.13.
Thus {a, bba, bbaab} ⊆ C∗. Because {a, bba, bbaab} is a code by Example 2.3.8,
{a, bba, bbaab}∗ is the smallest free monoid containing L. Thus rf(L) = 3.

The main goal in this section is to prove the defect theorem (Theorem 2.4.5).
It claims that if a language is not a code, then its free rank (and therefore also
combinatorial rank) is less than its size. This is analogous to the fact that r(S) < |S|
if S is a linearly dependent set of vectors. We start with a lemma.

Lemma 2.4.4. Let L be a language and ε /∈ L. Let C be the minimal generating
set of the smallest free monoid containing L. We can define a function f : L→ C
by letting f(w) be the first element in the unique C-factorization of w. Then f is
surjective.
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Proof. We assume that f is not surjective and derive a contradiction. Let v ∈ Crf(L)
and B = (C r {v})v∗. Clearly v /∈ (C r {v})∗, and every word in (C r {v})v+ is
longer than v, so v /∈ B∗. It follows that B∗ ( C∗, and from f(L) ⊆ C r {v} it
follows that L ⊆ B∗. If some word u has B-factorizations

(x1v
i1 , . . . , xmv

im , ), (y1v
j1 , . . . , ynv

jn)

where x1, . . . , xm, y1, . . . , yn ∈ C r {v}, then u has the C-factorizations

(x1, v, . . . , v︸ ︷︷ ︸
i1

, . . . , xm, v, . . . , v︸ ︷︷ ︸
im

), (y1, v, . . . , v︸ ︷︷ ︸
j1

, . . . , yn, v, . . . , v︸ ︷︷ ︸
jn

),

which must be equal. It follows that the B-factorizations of u are also equal. This
shows that B is a code, which contradicts the minimality of C∗.

Theorem 2.4.5. If a finite language L is not a code, then rf(L) ≤ |L| − 1.

Proof. First, let ε /∈ L and let C and f be as in Lemma 2.4.4. Then rf(L) = |C|.
Because L is not a code, some word u ∈ L∗ has two L-factorizations (x1, . . . xm) and
(y1, . . . , yn) such that x1 6= y1. But then we get the unique C-factorization of u by
concatenating the C-factorizations of the words xi, and also by concatenating the
C-factorizations of the words yi. If the first element of the C-factorization of u is z,
then f(x1) = z = f(y1). This shows that f is not injective, but it is surjective by
Lemma 2.4.4, so |C| < |L|.

Then, let ε ∈ L and let K = L r {ε}. Clearly, rf(L) = rf(K). If K is a
code, then rf(K) = |K|, and otherwise rf(K) < |K| by the above. In any case,
rf(L) = rf(K) ≤ |K| = |L| − 1.

The defect theorem can also be formulated for word equations.

Corollary 2.4.6. Let h be a solution of a nontrivial constant-free word equation
over Ξ. Then rf(h(Ξ)) ≤ |Ξ| − 1.

Proof. Because h is a solution of a nontrivial constant-free equation, h is not injective.
By Theorem 2.3.15, h is not injective on Ξ or h(Ξ) is not a code. In the former
case, rf(h(Ξ)) ≤ |h(Ξ)| < |Ξ|, and in the latter case, rf(h(Ξ)) < |h(Ξ)| ≤ |Ξ| by
Theorem 2.4.5.

A system of word equations is independent if it is not equivalent to any of its
proper subsets. If h is a solution of an independent pair of equations, then does it
follow that rf(h(Ξ)) ≤ |Ξ| − 2? The answer is no (exercise). However, we can prove
the following two theorems. The first one is a special case of the second one.

Theorem 2.4.7. Let Ξ = {X,Y, Z} and S, T, U, V ∈ Ξ∗. Let h be a solution of the
pair of word equations {(XS, Y T ), (XU,ZV )}. Then h is periodic or ε ∈ h(Ξ).

Proof. Let L = h(Ξ). If ε /∈ L, then we can let C and f be as in Lemma 2.4.4. Like in
the proof of Theorem 2.4.5, we see that f(h(X)) = f(h(Y )) and f(h(X))) = f(h(Z)).
It follows that f(h(Ξ)) = C is a singleton, and thus rf(h(Ξ)) = 1, meaning that h is
periodic.

The statement of the next theorem requires some terminology from graph theory.
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Theorem 2.4.8. Let h be a solution of a system of word equations

{(XiUi, YiVi) | 1 ≤ i ≤ n},

where Xi, Yi ∈ Ξ, Xi 6= Yi, Ui, Vi ∈ Ξ∗ for all i. Let c be the number of connected
components of the graph with the set of vertices Ξ and the set of edges

{{Xi, Yi} | 1 ≤ i ≤ n}.

Then rf(h(Ξ)) ≤ c or ε ∈ h(Ξ).

Proof. Left as an exercise.

Example 2.4.9. Let Ξ = {X,Y, Z} and Σ = {a, b}. Let us solve the word equation
(XY ZZY XZ,ZXZY ZY X). By a length argument, it is equivalent to the pair of
equations {(XY ZZ,ZXZY ), (Y XZ,ZY X)}. By Theorem 2.4.7, every solution h is
periodic or maps some variable to ε. The periodic solutions are

(X,Y, Z) 7→ (pi, pj , pk),

where p ∈ Σ∗ and i, j, k ≥ 0. If h(X) = ε, then h(Y ) and h(Z) commute, and if
h(Y ) = ε, then h(X) and h(Z) commute, so this does not give any nonperiodic
solutions. However, if h(Z) = ε, then h(X) and h(Y ) can be arbitrary, so we get the
solutions

(X,Y, Z) 7→ (p, q, ε),

where p, q ∈ Σ∗.

How large can an independent system of constant-free word equations be? For
one variable the answer is 1, for two variables it is 2, and for three variables the
answer is known to be between 3 and 18. In the general case of n variables, there
are independent systems larger than Cn4 for certain constant C ∈ R+, and the only
known upper bound is the following result, known as Ehrenfeucht’s conjecture or
Ehrenfeucht’s compactness property.

Theorem 2.4.10. Every system of word equations is equivalent to one of its finite
subsets. Consequently, every independent system of word equations is finite.

Exercises

2.4.1. Let L = {a, ba, abb, bbba}. Find rc(L) and rf(L).

2.4.2. Give an example of an independent system of three constant-free three-variable
word equations.

2.4.3. Let Ξ = {X,Y, Z} and Σ = {a, b}. Show that the pair of equations S =
{(XY Z,ZY X), (XY Y Z,ZY Y X)} is independent. (It has a nonperiodic solution by
Example 2.1.3.)

2.4.4. Let Ξ = {X,Y, Z} and Σ = {a, b}. Solve the pair of word equations
{(XYXZY, Y ZXY X), (XZY,ZY X)}.

2.4.5.* Prove Theorem 2.4.8.
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Chapter 3

Infinite words

3.1 Constructing infinite words

An infinite word over an alphabet Σ is an infinite sequence of elements of Σ. An
infinite word (a1, a2, a3, . . . ) is usually written without the commas and parentheses
as a1a2a3 · · · . The set of all infinite words over Σ is denoted by Σω.

Remark 3.1.1. The infinite words defined above could be more specifically called
right-infinite. It would be possible to define also two-way infinite words

· · · a−3a−2a−1a0a1a2a3 · · · ,

but we consider only right-infinite words here.

Many of the definitions we gave for finite words can be adapted for infinite words:

• An infinite word is called k-ary if it contains at most k different letters.

• The length of an infinite word w is |w| =∞.

• The concatenation or product of a finite word u and an infinite word w,
denoted by u · w or uw, is the word consisting of the letters of u followed
by the letters of v. In other words, if u = a1 · · · am and w = b1b2b3 · · · , then
uw = a1 · · · amb1b2b3 · · · .

• The concatenation wu of an infinite word w and a finite word u is not defined,
and neither is the concatenation of two infinite words.

• A finite word u ∈ Σ∗ is a factor of w ∈ Σω if w = xuy for some x ∈ Σ∗ and
y ∈ Σω.

• A finite word u ∈ Σ∗ is a prefix of w ∈ Σω if w = uy for some y ∈ Σω.

• An infinite word u ∈ Σω is a suffix of w ∈ Σω if w = xu for some x ∈ Σ∗.

If u, v ∈ Σ∗ ∪ Σω, then we denote their longest common prefix by u ∧ v. In the
trivial case u = v ∈ Σω, there are arbitrarily long common prefixes and we define
u ∧ u = u.

Let (wn)∞n=0 be a sequence of finite or infinite words. A finite or infinite word w is
the limit of this sequence if limn→∞ |wn ∧w| =∞ or wn = w for all sufficiently large
n. If the sequence (wn)∞n=0 has a limit, then the limit is unique and it is denoted by
limn→∞wn. We can also say that the sequence converges to the limit. We are mostly
interested in the case where the words wn are finite but the limit is an infinite word.
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Remark 3.1.2. A remark for those familiar with topology: Let

d : (Σ∗ ∪ Σω)× (Σ∗ ∪ Σω), d(u, v) =

{
0 if u = v

2−|u∧v| if u 6= v.

Then (Σ∗ ∪ Σω, d) is a compact metric space, and a sequence has a limit w in this
space if and only if it has a limit w in the sense of the definition given above. Proving
this is left as an exercise.

If wn is a prefix of wn+1 for all n, then clearly the sequence (wn)∞n=0 has a limit.
If u and u1, u2, u3 . . . are finite words, then we can define the infinite power uω and
the infinite product

∏∞
i=1 un = u1u2u3 · · · by

uω = lim
n→∞

un,

∞∏
i=1

un = u1u2u3 · · · = lim
n→∞

u1 · · ·un.

Example 3.1.3. Let Σ = {a, b}. Then

lim
n→∞

(ab)na = (ab)ω, lim
n→∞

anbn = aω.

An infinite word a1a2a3 · · · , where a1, a2, a3 . . . ∈ Σ, is ultimately periodic if there
exist numbers k, n ≥ 1 such that ai+k = ai for all i ≥ n, and it is periodic if we can
choose n = 1. Clearly, an infinite word w is ultimately periodic if and only if there
exist words u ∈ Σ∗ and v ∈ Σ+ such that w = uvω, and w is periodic if and only if
there exists a word v ∈ Σ+ such that w = vω. An infinite word is aperiodic if it is
not ultimately periodic.

Example 3.1.4. Let Σ = {a, b}. The word a(ba)ω = (ab)ω is periodic. It is quite
easy to see that the word a(ab)ω is ultimately periodic but not periodic, and the
word

∞∏
i=1

aib = abaabaaabaaaab · · ·

is aperiodic. Details are left as an exercise.

In the next two examples, we define two famous infinite words that are used later
several times. Like in many other examples in this chapter, we use the alphabet
{0, 1}.

Example 3.1.5. Let F0 = 0, F1 = 01, and Fn+2 = Fn+1Fn for all n ≥ 0. Clearly
Fn is a prefix of Fn+1 for all n ≥ 0, so the limit

F = lim
n→∞

Fn = 0100101001001010010100100101001001 · · ·

exists, and it is infinite. It is called the Fibonacci word.

For a word w ∈ {0, 1}∗, let w be the image of w under the morphism defined by
0 7→ 1, 1 7→ 0, that is, w is the word we get from w by swapping 0’s and 1’s.

Example 3.1.6. Let T0 = 0 and Tn+1 = TnTn for all n ≥ 0. Clearly Tn is a prefix
of Tn+1 for all n, so the limit

T = lim
n→∞

Tn = 01101001100101101001011001101001 · · ·

exists, and it is infinite. It is called the Thue–Morse word.
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For the rest of the chapter, let F , Fn, T , Tn be as in the previous two examples.
The next theorem gives an alternative way to define the Thue–Morse word.

Theorem 3.1.7. For n ≥ 0, let an ∈ {0, 1} be the sum of the digits in the binary
representation of n modulo 2. The infinite word a0a1a2 · · · is the Thue–Morse word.

Proof. We prove by induction that Tn = a0 · · · a2n−1 for all n ≥ 0. The case
n = 0 is clear. Let n ≥ 1. If i ∈ {0, . . . , 2n−1 − 1}, then we obtain the binary
representation of i + 2n−1 from the binary representation of i by adding 10k for
some k ≥ 0 to the beginning. Consequently, ai+2n−1 = ai + 1 mod 2. It follows
that a2n−1 · · · a2n−1 = a0 · · · a2n−1−1. From the induction hypothesis it follows that
a0 · · · a2n−1 = Tn−1Tn−1 = Tn. This completes the proof.

We continue with some other examples of infinite words.

Example 3.1.8. Let P0 = ε and Pn+1 = Pn0Pn1Pn0Pn for all n ≥ 0. Clearly Pn is
a prefix of Pn+1 for all n, so the limit

lim
n→∞

Pn = 010001010100010 · · ·

exists, and it is infinite. It is called the period-doubling word. It is closely related to
the Thue–Morse word, as we see in the exercises.

Example 3.1.9. Let S0 = 0 and Sn+1 = Sn13
n
Sn for all n ≥ 0. Clearly Sn is a

prefix of Sn+1 for all n, so the limit

lim
n→∞

Sn = 010111010111111111010111010 · · ·

exists, and it is infinite. It is called the Sierpinski word or the Cantor word.

Example 3.1.10. There exists a unique infinite word a0a1a2 · · · ∈ {1, 2}ω such that

a0a1a2 · · · =
∞∏
n=0

1a2n2a2n+1 = 1a02a11a22a3 · · · = 12211212212211211221211 · · · .

It is called the Oldenburger–Kolakoski word.

All the named words we have introduced are aperiodic.

Theorem 3.1.11. The Fibonacci word, the Thue–Morse word, the period-doubling
word, the Sierpinski word and the Oldenburger–Kolakoski word are aperiodic.

Proof. We prove the claims about the Fibonacci word and the Thue–Morse word;
the others are left as an exercise.

First, we consider the Fibonacci word F , assume that it is ultimately periodic,
and derive a contradiction. We can write F = uvω where v is primitive and u is of
minimal length. Let N be the smallest integer such that |FN | ≥ |uv|. Clearly N ≥ 1.
For all n ≥ N , we can write Fn = uvknvn, where kn is a positive integer and vn is a
proper prefix of v. Then

uvkn+2vn+2 = Fn+2 = Fn+1Fn = uvkn+1vn+1uv
knvn

and thus vn+1uv is a prefix of a power of v. It follows from Lemma 1.2.5 that vn+1u
must be a power of v. If u 6= ε, then this contradicts the minimality of u, so u = ε,
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and then also vn+1 = ε. We have shown that Fn+1 ∈ v∗ for all n ≥ N . But if
FN+2, FN+1 ∈ v∗, then also FN ∈ v∗, and then FN−1 ∈ v∗, which is a contradiction
by the definition of N . This contradiction shows that F is aperiodic.

Then, we consider the Thue–Morse word T = a0a1a2 · · · , assume that it is
ultimately periodic, and derive a contradiction. We could use a somewhat similar
strategy as for the Fibonacci word, but we use Theorem 3.1.7 instead. Let k, n be
such that ai+k = ai for all i ≥ n. Let m be such that mk − 1 ≥ n. Then

a2(mk−1)+1 = amk−1+mk = amk−1.

On the other hand, we obtain the binary representation of 2(mk − 1) + 1 from the
binary representation of mk−1 by adding the digit 1 to the end, so by Theorem 3.1.7,

a2(mk−1)+1 = amk−1 + 1 mod 2.

This contradiction shows that T is aperiodic.

Exercises

3.1.1. Let u and w0, w1, w2, . . . be finite words and let w = limn→∞wn be an infinite
word. If u is a factor of wi for all i, then is u necessarily a factor of w? If u is a
factor of w, then is u necessarily a factor of wi for some i?

3.1.2. Let u, v ∈ Σ+. Show that if |uω ∧ vω| ≥ |uv|, then uω = vω.

3.1.3. Justify in detail the claims of Example 3.1.4 about a(ab)ω being not periodic
and

∏∞
i=1 a

ib being aperiodic.

3.1.4. For n ≥ 1, let kn be the largest integer k such that 2k|n, and let bn = kn mod 2.
Show that b1b2b3 · · · is the period-doubling word.

3.1.5. Let a0a1a2 · · · be the Thue–Morse word and b1b2b3 · · · the period-doubling
word. Show that bn ≡ an + an−1 + 1 (mod 2) for all n ≥ 1.

3.1.6. Find out what the Sierpinski triangle and the Cantor set are (if you do not
know already), and think how they are similar to the Sierpinski word.

3.1.7. Let F2n−1 = G2n−101 and F2n = G2n10 for all n ≥ 1. Show that Gn is a
palindrome for all n.

3.1.8. Show that if u is a factor of the Fibonacci word, then so is uR.

3.1.9.* Show that the word equation (X01Y, Y 10X) over {X,Y } has infinitely
many solutions h such that h(X) and h(Y ) are prefixes of the Fibonacci word.

3.1.10.* Complete the proof of Theorem 3.1.11.

3.1.11.* (Topology.) Prove the claims in Remark 3.1.2.
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3.2 Morphic words

If Σ and Γ are alphabets and h : Σ∗ → Γ∗ is a morphism, then we can define the
image of an infinite word w = a1a2a3 · · · ∈ Σω under h by

h(w) = h(a1)h(a2)h(a3) · · · .

A finite or infinite word w is a fixed point of a morphism h if h(w) = w.
Infinite words are often constructed by iterating a morphism h : Σ∗ → Σ∗ on a

letter a, that is, as the limit of the sequence h(a), h2(a), h3(a), . . . . The limit can
be denoted by hω(a). In some cases, the limit is finite or does not exist, but under
certain simple conditions, the sequence is guaranteed to converge to an infinite word.

A morphism h : Σ∗ → Σ∗ is prolongable on a ∈ Σ if h(a) = au for some u ∈ Σ+

and hn(u) 6= ε for all n ≥ 0 (note that if h is nonerasing, that is, h(b) 6= ε for all
b ∈ Σ, as is the case in most of our examples, then the second condition hn(u) 6= ε is
automatically satisfied). Next we prove that if h is prolongable on a, then hω(a) is
an infinite word and a fixed point of h.

Theorem 3.2.1. Let h : Σ∗ → Σ∗ be prolongable on a ∈ Σ. Then

hω(a) = auh(u)h2(u)h3(u) · · · ,

and hω(a) is the unique fixed point of h beginning with a.

Proof. We can prove by induction that hn(a) = auh(u) · · ·hn−1(u) for all n ≥ 1:
Clearly this is true for n = 1, and if it is true for n, then

hn+1(a) = hn(au) = hn(a)hn(u) = auh(u) · · ·hn−1(u)hn(u).

This proves that hω(a) = auh(u)h2(u)h3(u) · · · .
It is clear that hω(a) begins with a and h(hω(a)) = hω(a). On the other hand, if

w = h(w) and pref1(w) = a, then we can prove by induction that w has a prefix hn(a)
for all n ≥ 0: Clearly this is true for n = 0, and if it is true for n, then w = h(w) has
a prefix h(hn(a)) = hn+1(a). This proves that w = hω(a).

An infinite word w ∈ Σω is pure morphic if there exists a letter a ∈ Σ and a
morphism h : Σ∗ → Σ∗ prolongable on a such that w = hω(a). An infinite word
w ∈ Σω is morphic if there exists an alphabet Γ, a pure morphic word u ∈ Γω, and a
morphism g : Γ∗ → Σ∗ such that w = g(u).

Next we are going to see that the Fibonacci word and the Thue–Morse word are
pure morphic.

Theorem 3.2.2. The Fibonacci word is the fixed point φω(0) of the morphism

φ : {0, 1}∗ → {0, 1}∗, φ(0) = 01, φ(1) = 0.

Proof. We can prove by induction that φn(0) = Fn and φn(1) = Fn−1 for all n ≥ 1:
Clearly this is true for n = 1, and if it is true for n, then

φn+1(0) = φn(01) = φn(0)φn(1) = FnFn−1 = Fn+1, φn+1(1) = φn(0) = Fn.

This proves the theorem.
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Theorem 3.2.3. The Thue–Morse word is the fixed point τω(0) of the morphism

τ : {0, 1}∗ → {0, 1}∗, τ(0) = 01, τ(1) = 10.

Proof. We can prove by induction that τn(0) = Tn and τn(1) = Tn for all n ≥ 0:
Clearly this is true for n = 0, and if it is true for n, then

τn+1(0) = τn(01) = τn(0)τn(1) = TnTn = Tn+1,

τn+1(1) = τn(10) = τn(1)τn(0) = TnTn = Tn+1.

This proves the theorem.

For the rest of the chapter, let φ and τ be the morphisms defined in the previous
two theorems.

We continue with some other examples of morphic words.

Example 3.2.4. It can be proved that the period-doubling word is the fixed point
hω(0) of the morphism

h : {0, 1}∗ → {0, 1}∗, h(0) = 01, h(1) = 00.

Example 3.2.5. It can be proved that the Sierpinski word is the fixed point hω(0)
of the morphism

h : {0, 1}∗ → {0, 1}∗, h(0) = 010, h(1) = 111.

Example 3.2.6. Let

h : {0, 1}∗ → {0, 1}∗, h(0) = 001, h(1) = 110,

be a morphism. Its fixed point

hω(0) = 001001110001001110110110001 · · ·

is called the Mephisto waltz word.

Example 3.2.7. Let

h : {0, 1, 2}∗ → {0, 1, 2}∗, h(0) = 01, h(1) = 02, h(2) = 0,

be a morphism. Its fixed point

hω(0) = 010201001020101020100102 · · ·

is called the Tribonacci word.

Example 3.2.8. Let

h : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗, h(0) = 0, h(1) = 1, h(2) = 203, h(3) = 213,

g : {0, 1, 2, 3}∗ → {0, 1}∗, g(0) = 0, g(1) = 1, h(2) = h(3) = ε,

be morphisms. The morphic word

g(hω(2)) = 001001100011011 · · ·

is called the paperfolding word. It can also be defined with the help of the morphisms

h1 : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗, h(0) = 02, h(1) = 03, h(2) = 12, h(3) = 13,

g1 : {0, 1, 2, 3}∗ → {0, 1}∗, g(0) = g(2) = 0, g(1) = g(3) = 1,

as the word g1(h
ω
1 (0)).
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Next, we study the relations between ultimately periodic and morphic words.

Theorem 3.2.9. Every periodic word is pure morphic, and every ultimately periodic
word is morphic. There are ultimately periodic words that are not pure morphic.

Proof. First, consider an arbitrary periodic word (au)ω ∈ Σω, where a ∈ Σ and
u ∈ Σ∗. Let h : Σ∗ → Σ∗ be the morphism defined by h(b) = (au)2 for all b ∈ Σ.
Then hω(a) = (au)ω, so (au)ω is pure morphic.

Then, consider an arbitrary ultimately periodic word uvω ∈ Σω, where u ∈ Σ∗

and v ∈ Σ+. Let

h : {0, 1}∗ → {0, 1}∗, h(0) = 01, h(1) = 1,

g : {0, 1}∗ → Σ∗, g(0) = u, g(1) = v,

be morphisms. Then g(hω(0)) = uvω, so uvω is morphic.
Finally, consider the ultimately periodic word w = 010ω ∈ {0, 1}ω. If h : {0, 1}∗ →

{0, 1}∗ is a morphism prolongable on 0, then h(w) begins with 00 or contains infinitely
many 1’s, so h(w) 6= w. This shows that w cannot be pure morphic.

Exercises

3.2.1. Let h : {0, 1}∗ → {0, 1}∗, h(0) = 010, h(1) = 1, be a morphism. Show that
hω(0) is periodic.

3.2.2. Prove the claims in Examples 3.2.4 and 3.2.5.

3.2.3. Find a way to define the Mephisto waltz word using recurrence relations
similar to those in Example 3.1.6.

3.2.4. Let w0 = 0, w1 = 010, and wn+2 = wn+1wnwn+1 for all n ≥ 0. Find a
morphism h such that hω(0) = limn→∞wn.

3.2.5. For which words u ∈ {0, 1}∗ is the word 0u0ω pure morphic? What about the
word 0u1ω?

3.2.6. Show that the aperiodic word in Example 3.1.4 is morphic but not pure
morphic.

3.2.7.* Let a0a1a2 · · · be the Thue–Morse word. Let N be a positive integer. Show
that

2N−1∑
k=0

(−1)akkn = 0

for all n ∈ {0, . . . , N − 1}.

3.2.8.* Find out where the name of the paperfolding word comes from.

3.2.9.* (Programming.) Write a program that takes as input a letter a ∈ Σ, a
morphism h : Σ∗ → Σ∗ prolongable on a, and a number n ∈ Z≥0, and returns the
prefix of length n of hω(a).
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3.3 Repetition-freeness

Let α ∈ R, α > 1. A finite or infinite word is α-free if it does not have a nonempty
factor that is a q-power for any rational number q ≥ α. A finite or infinite word
is α+-free if it does not have a nonempty factor that is a q-power for any rational
number q > α. 2-free words can be called square-free, 3-free words cube-free, and
2+-free words overlap-free.

A morphism h is α-free, if h(w) is α-free for all α-free finite words w. Similarly,
h is α+-free, if h(w) is α+-free for all α+-free finite words w.

Lemma 3.3.1. Let α ∈ R, α > 1. Let h : Σ∗ → Σ∗ be an α-free (α+-free) morphism
prolongable on a ∈ Σ. Then hω(a) is α-free (α+-free, respectively).

Proof. The word h0(a) = a is α-free. If h is α-free, then it follows by induction that
hn(a) is α-free for all n. Every factor of hω(a) is a factor of hn(a) for some n, so also
hω(a) is α-free. The claim about α+-freeness can be proved in the same way.

Example 3.3.2. Let α > 1 and n = dαe. The word 1n−10 is α-free, but the word
φ(1n−10) = 0n1 is not α-free. This shows that φ is not α-free for any α. However,
the Fibonacci word is known to be (2 + ϕ)-free, where ϕ = (1 +

√
5)/2 is the golden

ratio (this is more difficult to prove than the repetition-freeness results we prove
in this section). It follows that the converse of Lemma 3.3.1 does not hold, that is,
hω(a) can be α-free even if h is not.

For which numbers α does there exist an infinite α-free word? The answer
depends on the size of the alphabet. First, we consider the binary case. Every word
of length 4 over {0, 1} contains one of the factors 00, 11, 0101, 1010, so a binary
infinite word cannot be square-free. The next theorem shows that there are cube-free
binary infinite words.

Theorem 3.3.3. The morphism h : {0, 1}∗ → {0, 1}∗, h(0) = 010, h(1) = 011, and
therefore also the infinite word hω(0), is cube-free.

Proof. We have to prove that if the image h(w) of some w ∈ {0, 1}∗ contains a
nonempty cube u3 as a factor, then w is not cube-free. Let w = a1 · · · an and

h(w) = h(a1) · · ·h(an) = 01a1 · · · 01an = b1 · · · b3n,

where a1, . . . , an, b1, . . . , b3n ∈ {0, 1}. Then bi = 0 if i ≡ 1 (mod 3), bi = 1 if i ≡ 2
(mod 3), and bi = ai/3 if i ≡ 3 (mod 3). Let |u| = m and u3 = bj · · · bj+3m−1.

If 3 - m, then j, j +m, j + 2m are pairwise distinct modulo 3 and thus at least
one of bj , bj+m, bj+2m is 0 and at least one is 1. On the other hand, pref1(u) = bj =
bj+m = bj+2m, which is a contradiction.

If 3|m, k = m/3, and i = dj/3e, then

u = xaiy · · ·xai+k−1y = xai+ky · · ·xai+2k−1y = xai+2ky · · ·xai+3k−1y,

where

(x, y) =


(01, ε) if j ≡ 1 (mod 3)

(1, 0) if j ≡ 2 (mod 3)

(ε, 01) if j ≡ 3 (mod 3).

It follows that ai · · · ai+3k−1 is a cube, so w is not cube-free.
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Example 3.3.4. The word hω(0) in Theorem 3.3.3 is not α-free for any α < 3. We
can prove by induction that, for all n ≥ 0, there exists a word u of length 3n − 1
such that u0u0u is a factor of hω(0): This is true for n = 0 because 00 is a factor,
and if u0u0u is a factor and |u| = n, then hω(0) has the factor

h(u0u0u)01 = h(u)010h(u)010h(u)01 = v0v0v,

where v = h(u)01 and thus |v| = 3|u|+ 2 = 3n+1 − 1. This means that, for all n ≥ 0,
hω(0) contains a (3n+1 − 1)/3n-power as a factor, so it cannot be α-free for any
α < 3.

Even though binary infinite words cannot be square-free, they can be overlap-free.

Theorem 3.3.5. The morphism τ , and therefore also the Thue–Morse word, is
overlap-free.

Proof. We have to prove that if the image τ(w) of some w ∈ {0, 1}∗ has a factor
auaua, where a ∈ {0, 1} and u ∈ {0, 1}∗, then w is not overlap-free. Let w = a1 · · · an
and

h(w) = τ(a1) · · · τ(an) = a1a1 · · · anan = b1 · · · b2n,

where a1, . . . , an, b1, . . . , b2n ∈ {0, 1}. Let |u| = m− 1.
If 2 - m, then there exist i, j, k such that

aua = τ(ai) · · · τ(ai+k) = aτ(aj) · · · τ(aj+k−1)a.

Because aua has even length, it must have a factor bb for some b ∈ {0, 1}. This is a
contradiction because τ(0) 6= bb 6= τ(1).

If 2|m and k = m/2, then there exists an index i such that

au = τ(ai) · · · τ(ai+k−1) = τ(ai+k) · · · τ(ai+2k−1), ai = ai+k = ai+2k,

or

ua = τ(ai+1) · · · τ(ai+k) = τ(ai+k+1) · · · τ(ai+2k), ai = ai+k = ai+2k,

so w has the factor aivaivai, where v = ai+1 · · · ai+k−1.

In the case of a ternary alphabet, there exist square-free infinite words.

Theorem 3.3.6. Let h : {0, 1, 2}∗ → {0, 1}∗, h(0) = 0, h(1) = 01, h(2) = 011 be a
morphism. There exists a unique infinite word w ∈ {0, 1, 2}ω such that h(w) is the
Thue–Morse word. This word w is square-free.

Proof. It is clear that the Thue–Morse word (like any other infinite word in {0, 1}ω
that begins with 0) can be written uniquely as a product u1u2u3 · · · , where ui ∈ 01∗

for all i. Because the Thue–Morse word is cube-free, ui ∈ {0, 01, 011} for all i. Thus
T = h(w) for some unique w. If w has a nonempty factor u2, then h(w) has the
factor h(u)20, so h(w) is not overlap-free, which is a contradiction.

The repetition threshold for k-ary alphabets, denoted by RT (k), is the infimum
of the numbers α such that there exists an α-free k-ary infinite word. We have seen
that RT (2) = 2. The exact value of RT (k) is known for all other values of k as well.
The following result was an open conjecture, known as Dejean’s conjecture, for a long
time before it was proved. We state it here without proof.
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Theorem 3.3.7.

RT (k) =


k/(k − 1) if k = 2 or k ≥ 5

7/4 if k = 3

7/5 if k = 4.

A finite or infinite word w avoids a language L if w has no nonempty factors in
L. A language L is avoidable on an alphabet Σ if there exists an infinite word over
Σ that avoids L. So we have proved that the set of cubes is avoidable on a binary
alphabet, and the set of squares is avoidable on a ternary alphabet. A huge number
of different avoidability questions have been studied. As an example, we consider the
avoidability of so-called abelian powers in the next section. Some other questions
that have been studied are mentioned below.

• Let Γ,Σ be alphabets. For some word u ∈ Γ∗, is the set of images of u under
all nonerasing morphisms Γ∗ → Σ∗ avoidable? For example, if Γ = Σ = {0, 1},
the answer is known to be negative for u = 0011 and positive for u = 00110.

• If the alphabet is a subset of Z, a word a1 · · · a2n such that a1 + · · · + an =
an+1 + · · · + a2n is called an additive square. Is the set of additive squares
avoidable on some alphabet? This is a famous open question. It is known
that the analogously defined additive cubes are avoidable on some ternary
alphabets.

• For some avoidable language L, what is the growth rate of the number of
words of length n that avoid L? For example, it is known that the number of
cube-free binary and square-free ternary words grows exponentially, but the
number of overlap-free binary words grows only polynomially.

• For some α > 1, how can we check whether a given morphism is α-free? For
example, a simple algorithm is known for α = 2.

Exercises

3.3.1. Show that the morphism h : {0, 1}∗ → {0, 1}∗, h(0) = 001, h(1) = 011, is
cube-free.

3.3.2. Show that the Thue–Morse word does not have nonempty square prefixes.

3.3.3. Show that there exists a binary infinite word that does not have nonunary
square factors.

3.3.4. Show that RT (k) ≥ k/(k − 1) for all k ≥ 2 (without using Theorem 3.3.7).

3.3.5. Find the shortest cube that is a factor of the Fibonacci word.

3.3.6.* Show that the Fibonacci word is not α-free for any α < (2 + ϕ), where
ϕ = (1 +

√
5)/2 is the golden ratio.

3.3.7.* (Programming.) Write a program that counts the number of cube-free words
in {0, 1}20 and square-free words in {0, 1, 2}20.
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3.4 Abelian repetition-freeness

Let n ≥ 2 be an integer. An abelian n-power is a finite word of the form u1 · · ·un,
where u1, . . . , un are abelian equivalent words. Abelian 2-powers can be called abelian
squares and abelian 3-powers can be called abelian cubes.

Example 3.4.1. All squares are abelian squares. Of all the words in {0, 1}4, the
only abelian squares which are not squares are 0110 and 1001.

Before moving on to abelian repetition-freeness, we introduce a couple of notions
that can be useful when studying abelian equivalence, and also in other contexts. To
simplify notation, let k ≥ 1 and Σ = {0, . . . , k − 1} for the rest of the section.

The Parikh vector of a word u ∈ Σ∗, denoted by Π(u), is the k-dimensional
column vector (|u|0, . . . , |u|k−1)T . Clearly, Π(uv) = Π(u) + Π(v), and words are
abelian equivalent if and only if they have the same Parikh vector.

The incidence matrix of a morphism h : Σ∗ → Σ∗, denoted by M(h), is the k× k
matrix with columns Π(h(0)), . . . ,Π(h(k − 1)), that is,

M(h) =

 |h(0)|0 · · · |h(k − 1)|0
· · · · · · · · ·

|h(0)|k−1 · · · |h(k − 1)|k−1


It is easy to see that Π(h(u)) = M(h)Π(u).

Example 3.4.2. Let f−2 = 0, f−1 = 1, and fn = fn−1 + fn−2 for all n ≥ 0. Then
|Fn| = fn and Π(Fn) = (fn−1, fn−2)

T for all n ≥ 0. Because Fn+1 = φ(Fn), we get

Π(Fn+1) = M(φ)Π(Fn) =

(
1 1
1 0

)(
fn−1
fn−2

)
=

(
fn−1 + fn−2

fn−1

)
=

(
fn
fn−1

)
,

as expected.

Lemma 3.4.3. Let h : Σ∗ → Σ∗ be a morphism and u, v ∈ Σ∗. If u and v are
abelian equivalent, then h(u) and h(v) are abelian equivalent. If h(u) and h(v) are
abelian equivalent and M(h) is invertible, then u and v are abelian equivalent.

Proof. If Π(u) = Π(v), then

Π(h(u)) = M(h)Π(u) = M(h)Π(v) = Π(h(v)),

so the first claim is true. If Π(h(u)) = Π(h(v)) and M(h) is invertible, then

Π(u) = M(h)−1Π(h(u)) = M(h)−1Π(h(v)) = Π(v),

so the second claim is true.

A finite or infinite word is abelian n-free if it does not have a nonempty factor
that is an abelian n-power. Abelian 2-free words can be called abelian square-free
and abelian 3-free words abelian cube-free.

If the alphabet size is fixed, then what is the smallest integer n for which there
exists an infinite abelian n-free word? It can be proved that the answer is n = 4
in the binary case, n = 3 in the ternary case, and n = 2 in the 4-ary case. We
concentrate mostly on the binary case.

40



Theorem 3.4.4. The fixed point hω(0) of the morphism

h : {0, 1}∗ → {0, 1}∗, h(0) = 011, h(1) = 0001,

is abelian 4-free.

Proof. We assume that hω(0) is not abelian 4-free and derive a contradiction. Let
x1x2x3x4, where x1, x2, x3, x4 are abelian equivalent, be the shortest nonempty factor
of hω(0) that is an abelian 4-power. We can easily check that |x1| ≤ 3 is not possible.
Because hω(0) is a fixed point of h, it has a factor a1w1a2w2a3w3a4w4a5 such that
wi ∈ {0, 1}∗ for i ∈ {1, 2, 3, 4}, ai ∈ {0, 1}, h(ai) = yizi, yi ∈ {0, 1}∗, zi ∈ {0, 1}+ for
i ∈ {1, 2, 3, 4, 5}, and xi = zih(wi)yi+1 for i ∈ {1, 2, 3, 4} (see Figure 3.1).

Let us define a function f : {0, 1}∗ → Z, f(u) = |u|0 + 2|u|1. Then f(uv) =
f(u) + f(v) for all words u, v. If u and v are abelian equivalent, then f(u) = f(v),
so f(xi) = f(x1) for all i. From f(h(0)) = f(h(1)) = 5 it follows that f(h(u)) ≡ 0
(mod 5) for all words u.

For i ∈ {1, . . . , 4}, we have

f(yi+1) = f(xi)− f(h(wi))− f(zi)

= f(xi)− f(h(wi))− f(h(ai)) + f(yi)

≡ f(x1) + f(yi) (mod 5).

Thus the sequence f(y1), f(y2), f(y3), f(y4), f(y5) is an arithmetic progression modulo
5. For all i, yi is a proper prefix of h(0) or h(1), so yi ∈ {ε, 0, 00, 01, 000}, and therefore
f(yi) ∈ {0, 1, 2, 3}. In particular, f(yi) 6≡ 4 (mod 5), so the only possible arithmetic
progression modulo 5 is a constant one, that is,

f(y1) = f(y2) = f(y3) = f(y4) = f(y5).

It follows that if f(y1) ∈ {0, 1, 2}, then it must be y1 = · · · = y5, and if f(y1) = 3,
then it must be z1 = · · · = z5 = 1.

Let us assume that y1 = · · · = y5 (the case z1 = · · · = z5 is similar). For all
i ∈ {1, 2, 3, 4}, yixi = h(ai)h(wi)yi+1 and yi = yi+1, and then xi and h(ai)h(wi) are
abelian equivalent. Thus the words h(aiwi) are abelian equivalent for i ∈ {1, 2, 3, 4}.
The incidence matrix of h is invertible, so it follows from Lemma 3.4.3 that the words
aiwi are abelian equivalent for i ∈ {1, 2, 3, 4}. But then a1w1a2w2a3w3a4w4 is an
abelian 4-power and a factor of hω(0), which contradicts the minimality of x1x2x3x4.
This contradiction completes the proof.

y1 z1 y2 z2 y3 z3 y4 z4 y5 z5

x1 x2 x3 x4

h(a1) h(w1)
h(a2) h(w2)

h(a3) h(w3)
h(a4) h(w4)

h(a5)

Figure 3.1: Illustration related to the proof of Theorem 3.4.4.

Example 3.4.5. Let us determine the longest binary abelian cube-free words. By
symmetry, we can assume that the first letter is 0. Then we can continue by 0 or 1.
After 00, we must continue by 1, because 000 is a cube. After 001, we can continue
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by 0 or 1. After 0010, we can continue by 0 or 1. After 00100, we must continue by
1. After 001001, we can continue by 0 or 1. After 0010010, we must continue by 0,
because 100101 is an abelian cube. The word 00100100 cannot be extended, so we
must backtrack to 0010011, which also cannot be extended, so we must backtrack to
00101. After 00101, we can continue by 0 or 1. Continuing the search gives the tree
in Figure 3.2, from which we see that the longest words are of length 9: 001101100,
001101101, 010010011.

0

0 1

0
0 1

0 0
1

1
0 0
1

1 0
0
1 1 0

0
1

1

0
0 1

0 0 1 1
1

1
0 0
1

1 0
0
1 1 0

0
1

Figure 3.2: Abelian cube-free binary words starting with 0.

We state two other results without proof.

Theorem 3.4.6. The fixed point hω(0) of the morphism

h : {0, 1, 2}∗ → {0, 1}∗, h(0) = 0012, h(1) = 112, h(2) = 022,

is abelian cube-free.

Theorem 3.4.7. The fixed point hω(0) of the morphism

h : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗,
h(0) = 012023212320323130102010310121312102123202

1013010203212320231210212320232132303132120,

h(1) = 123130323031030201213121021232023213230313

2120121310323031302321323031303203010203231,

h(2) = 230201030102101312320232132303130320301020

3231232021030102013032030102010310121310302,

h(3) = 301312101213212023031303203010201031012131

0302303132101213120103101213121021232021013,

is abelian square-free.

Exercises

3.4.1. How long can a ternary abelian square-free word be?

3.4.2.* Prove Theorem 3.4.6 using the same strategy as in the proof of Theorem 3.4.4.

3.4.3.* Let n be a positive integer. Show that every infinite word has a nonempty
factor that is abelian equivalent to an n-power.
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3.5 Factor complexity

For an infinite word w, let Factn(w) be the set of factors of w of length n. The factor
complexity of an infinite word w is the function

Pw : Z+ → Z+, Pw(n) = |Factn(w)|.

Example 3.5.1. Let w = 0(01)ω. Then

Fact2n−1(w) = {0(01)n−1, 0(10)n−1, 1(01)n−1},
Fact2n(w) = {00(10)n−1, (01)n, (10)n}

for all n ≥ 1, so Pw(1) = 2 and Pw(n) = 3 for all n ≥ 2.

A finite word x is a right special factor of an infinite word w if there exist at least
two letters a such that xa is a factor of w (note that if x is a factor of w, then there
always exists at least one such letter).

Example 3.5.2. For the Thue–Morse word T ,

Fact2(T ) = {00, 01, 10, 11}, Fact3(T ) = {001, 010, 011, 100, 101, 110},

so PT (2) = 4 and PT (3) = 6, and the right special factors of T of length 2 are 01 and
10.

The next lemma gives a connection between right special factors and factor
complexity. In particular, it shows that Pw(n) ≤ Pw(n+ 1) for all infinite words w
and for all positive integers n.

Lemma 3.5.3. Let w be an infinite word and n a positive integer. Let w have exactly
k right special factors of length n. Then Pw(n+ 1) ≥ Pw(n) + k. Moreover, if k = 0
or if w is binary, then Pw(n+ 1) = Pw(n) + k.

Proof. For u ∈ Factn(w), let

Au = {a ∈ Σ | ua ∈ Factn+1(w)}.

Let Rn be the set of right special factors of length n. Then |Au| ≥ 2 for all u ∈ Rn,
and |Au| = 1 for all u ∈ Factn(w) rRn. We have

Factn+1(w) =
⋃

u∈Factn(w)

uAu,

and therefore

Pw(n+ 1) =
∑

u∈Factn(w)

|Au|

= |Factn(w)|+
∑

u∈Factn(w)

(|Au| − 1)

= Pw(n) +
∑
u∈Rn

(|Au| − 1)

≥ Pw(n) + |Rn| = Pw(n) + k.

If k = 0, then Rn = ∅, and if w is binary, then |Au| − 1 = 1 for all u ∈ Rn, so in
these cases we have Pw(n+ 1) = Pw(n) + k.
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The following theorem is known as the theorem of Morse and Hedlund.

Theorem 3.5.4. For an infinite word w, the following are equivalent:

1. w is ultimately periodic.

2. Pw(n) = c for some constant c and all sufficiently large n.

3. Pw(n) ≤ n for some n.

Proof. 1 =⇒ 2: Let w = uvω. Every factor of w is a prefix of tvω for some nonempty
suffix t of uv. Thus Pw(n) ≤ |uv|. The claim follows, because Pw(n) ≤ Pw(n+ 1) for
all n.

2 =⇒ 3: Trivial.
3 =⇒ 1: If Pw(n) ≤ n, then it must be Pw(m) = Pw(m+ 1) for some m ≤ n.

This means that w has no right special factor of length m by Lemma 3.5.3. Let
w = a1a2a3 · · · , where all ai are letters. Some factor of length m must occur twice
in w, say, ai+1 · · · ai+m = aj+1 · · · aj+m, where i < j. But then ai+m+1 = aj+m+1,
because otherwise ai+1 · · · ai+m would be right special. By induction, ai+k = aj+k
for all k ≥ 1, so w is ultimately periodic.

In Section 3.6, we see that there exist words w such that Pw(n) = n + 1 for
all n ≥ 1. It follows from Theorem 3.5.4 that this is the smallest possible factor
complexity function of an aperiodic word. The largest possible factor complexity
function, on the other hand, is Pw(n) = kn, where k is the size of the alphabet.
Proving this is left as an exercise.

Often, we are not interested in the exact values of a factor complexity function,
but only in its growth rate. For that purpose, let us define some commonly used
notation. Let f : Z+ → Z+ and g : R+ → R be functions.

• The notation f(n) = O(g(n)) means that there exist α ∈ R+ and N ∈ Z+ such
that f(n) ≤ αg(n) for all n ≥ N .

• The notation f(n) = Θ(g(n)) means there exist α, β ∈ R+ and N ∈ Z+ such
that αg(n) ≤ f(n) ≤ βg(n) for all n ≥ N .

We can make a remark about the factor complexities of morphic words. It is
known that Pw(n) = O(n2) for all morphic words w. For pure morphic words, the
following more precise result, known as Pansiot’s theorem, is known.

Theorem 3.5.5. If w is a pure morphic word, then one of the following holds:

1. Pw(n) = Θ(1).

2. Pw(n) = Θ(n).

3. Pw(n) = Θ(n log log n).

4. Pw(n) = Θ(n log n).

5. Pw(n) = Θ(n2).
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In addition to studying how many factors of a certain length an infinite word has,
we can study how often the factors occur in the word. We conclude this section with
some defitions related to this question. These definitions are studied a little bit in
the exercises. They are not otherwise needed in the remaining part of these lecture
notes.

An infinite word w is recurrent if every factor of w has infinitely many occurrences
in w. An infinite word w is uniformly recurrent if for every factor x of w, there exists
a number n such that x is a factor of every word in Factn(w).

Let x be a factor of an infinite word w. If the limit

lim
n→∞

| prefn(w)|x
n

exists, it is called the frequency of x in w.

Exercises

3.5.1. Give an example of an infinite word w such that Pw(n) = 5 for all n ≥ 4 but
not for n = 3.

3.5.2. Find all right special factors of the Fibonacci word of length less than 7.

3.5.3. Find all right special factors of the word
∏∞
i=1 0i1 = 01001000100001 · · · and

estimate the growth rate of its factor complexity.

3.5.4. Show that for all infinite words w and for all m,n ≥ 1,

Pw(m+ n) ≤ Pw(m)Pw(n).

3.5.5. Give an example of a k-ary infinite word w such that Pw(n) = kn for all n ≥ 1.

3.5.6.* Let w be a k-ary infinite word. Show that either Pw(n) = kn for all n ≥ 1
or Pw(n) = O(αn) for some α < k.

3.5.7. Show that PT (n) = Θ(n).

3.5.8.* Try to find an interesting class of morphisms such that the following holds:
If h is a morphism in this class and w = hω(0), then Pw(n) = O(n).

3.5.9. Show that if every factor of an infinite word w has at least two occurrences in
w, then w is recurrent.

3.5.10. Show that every periodic word is uniformly recurrent. Show that an ultimately
periodic word that is not periodic is not recurrent.

3.5.11. Show that the Thue–Morse word is uniformly recurrent. Show that the
Sierpinski word is recurrent but not uniformly recurrent.

3.5.12. Give an example of an infinite word w and its factor x such that the frequency
of x in w does not exist.

3.5.13. Find the frequency of 0 in the Thue–Morse word.

3.5.14.* Find the frequencies of 0 and 00 in the period-doubling word.
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3.6 Sturmian words

An infinite word w is Sturmian if Pw(n) = n+ 1 for all n. Note that if w is Sturmian,
then Pw(1) = 2, which means that w is binary. From now on, we concentrate on
infinite words over the alphabet {0, 1}.

It is not immediately clear from the definition whether there exist any Sturmian
words. We see later that there are uncountably many Sturmian words in {0, 1}ω,
and the Fibonacci word is one of them.

An infinite word w ∈ {0, 1}ω is balanced if for all n ≥ 1 and all u, v ∈ Factn(w),

||u|1 − |v|1| ≤ 1.

Example 3.6.1. The set of factors of length six of the Fibonacci word is

Fact6(F ) = {001001, 001010, 010010, 010100, 100100, 100101, 101001},

so |u|1 ∈ {2, 3} for all u ∈ Fact6(F ). This means that F satisfies the balance condition
at least for n = 6. We show later that F is balanced. The Thue–Morse word is not
balanced, because it has factors 00 and 11.

Lemma 3.6.2. An infinite word w ∈ {0, 1}ω is not balanced if and only if it has
factors 0z0 and 1z1 for some word z.

Proof. The “if”-direction is clear. To prove the “only if”-direction, let w be not
balanced. Let u, v be the shortest factors of w such that |u| = |v| and |u|1 − |v|1 ≥
2. Let u = ax and v = by, where a, b ∈ {0, 1}. If a = b, then |x| = |y| and
|x|1 − |y|1 = |u|1 − |v|1 ≥ 2, which contradicts the minimality of u and v, so it must
be a 6= b. Let z be the maximal common prefix of x and y. If z = x = y, then
||u|1−|v|1| = 1, which is a contradiction, so it must be |z| < |u| = |v|. Then u = azcs
and v = bzdt, where c and d are distinct letters. If a = d and b = c, then |s| = |t|
and |s|1 − |t|1 = |u|1 − |v|1 ≥ 2, which contradicts the minimality of u and v, so it
must be a = c and b = d. Then 0z0 and 1z1 are factors of w.

Theorem 3.6.3. If w ∈ {0, 1}ω is balanced and aperiodic, then it is Sturmian.

Proof. Let w be aperiodic and not Sturmian. Then w has two right special factors
u, v of the same length, which means that u0, u1, v0, v1 are factors of w. Let x be
the longest common suffix of u and v. Because u 6= v, it must be |x| < |u| = |v|.
This means that one of 0x and 1x is a suffix of u and the other is a suffix of v. Then
w has the factors 0x0 and 1x1, so w is not balanced. This proves the theorem.

In the next two theorems, we find examples of Sturmian words.

Theorem 3.6.4. The Fibonacci word is Sturmian.

Proof. The Fibonacci word F is aperiodic by Theorem 3.1.11, so by Theorem 3.6.3,
it is sufficient to show that it is balanced. We assume that F is not balanced and
derive a contradiction. Let 0z0 and 1z1 be factors of F and let |z| be minimal. It is
easy to see that |z| ≥ 2. Because 11 is not a factor of F , z = 0x0, and 00x00 and
010x01 are factors of F . Because F = φ(F ), we see that 00x0 = φ(1)φ(u)φ(1) and
010x01 = φ(0)φ(u)φ(0), where 1u1 and 0u0 are factors of F . This contradicts the
minimality of z.
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An infinite word w = a1a2a3 · · · is mechanical if there exist real numbers α, β ∈
[0, 1] such that

an = bα(n+ 1) + βc − bαn+ βc

for all n ≥ 0 or
an = dα(n+ 1) + βe − dαn+ βe

for all n ≥ 0.

Theorem 3.6.5. If w ∈ {0, 1}ω is mechanical and aperiodic, then it is Sturmian.

Proof. Left as an exercise.

It could be proved that also the other directions of Theorems 3.6.3 and 3.6.5 are
true. In other words, the following are equivalent for an infinite word w ∈ {0, 1}ω:

1. w is Sturmian.

2. w is balanced and aperiodic.

3. w is mechanical and aperiodic.

Sturmian words have also many other equivalent definitions, and they come up in
many different places.

Exercises

3.6.1. Give examples of balanced and nonbalanced periodic words.

3.6.2. Show that Sturmian words are recurrent.

3.6.3.* Show that all suffixes of a Sturmian word are Sturmian. Show that for every
Sturmian word w, there exists a letter a such that aw is Sturmian. Can you find
some kind of a generalization of this for some larger class of infinite words?

3.6.4.* Prove Theorem 3.6.5. Prove that a mechanical word is aperiodic if and only
if the number α in the definition is irrational.

3.6.5.* How is the picture on the cover related to this section?
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Hints and answers to selected
exercises

1.1.1. 3n − 3 · 2n + 3.

1.1.2. 12, 11.

1.1.4. Show that a k-ary word of length n can have at most
∑n

i=0 min{ki, n− i+ 1}
factors. Find a binary word of length 10 that matches this bound, either by hand,
by a computer search, or by using De Bruijn words.

1.1.9. Use the function NB of Example 1.1.11, or the alphabetical order (it is defined
in Section 1.3, but you probably know how it works).

1.2.1. Notice that |xy| = |yx|.

1.2.2. Use Lemma 1.2.1.

1.2.3. Use Theorem 1.2.4.

1.2.4. Use Lemma 1.2.5.

1.2.5. Use Theorem 1.2.6 and Theorem 1.2.8.

1.2.6. Let pk(n) be the number of primitive words in Σn. Show that

kn =
∑
d|n

pk(d)

and use the Möbius inversion formula.

1.3.2. kn/2 if n is even and k(n+1)/2 if n is odd.

1.3.3. Show that if w is a word and a is a letter, then wa can have at most one
palindromic factor that w does not have. Conclude that the answer is n+ 1.

1.3.4. As an intermediate result, show that v and vR are conjugates.

1.3.10. Show that uuv ≤lex uvu or vuu ≤lex uvu.

1.4.4. Use Theorem 1.4.4 and the fact that if k is a period, then nk is a period for
all n ≥ 1. Alternatively, use Theorem 1.2.6.

1.4.6. Use Theorem 1.4.6.
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2.1.2. (X,Y, Z) 7→ (pq, p, qpq), (X,Y, Z) 7→ (pq, pqp, q).

2.1.3. (X,Y, Z) 7→ (pi, pj , pk), (X,Y, Z) 7→ (p, ε, q).

2.1.4. Try to fit h(T )3 inside h(Y ).

2.1.6. At least length 14 is possible.

2.1.7. Make h(Y ) short, h(X) long, and h(Z) even longer.

2.1.8. Show first that if h is a solution, then h(X) = h(Y Z).

2.2.1. (X,Y ) 7→ ((pa)ip, (pa)jp).

2.2.2. (S, T,X, Y ) 7→ (p, p, qi, qj).

2.2.3. (X,Y, Z) 7→ ((pq)ip, (pq)i+1p, qp2q), (X,Y, Z) 7→ (p, p, ε).

2.2.4. (X,Y, Z, T ) 7→ (ai, aj , ak, al).

2.2.5. (X) 7→ (a), (X) 7→ (aaba).

2.2.6. (X,Y, Z) 7→ (ai, a, ai+1).

2.2.7. (X,Y, Z) 7→ (((pq)i+1p)jpq, (pq)ip, qp((pq)i+1p)k), (X,Y, Z) 7→ (pi, pj , pk).

2.2.8. Start by writing the equation in the form (U0b1U1 · · · bmUm, V0c1V1 · · · cnVn),
where all bi, ci ∈ Σ r {a} and all Ui, Vi ∈ {X, a}∗. Show that m = n and bi = ci for
all i. Study the equations (Ui, Vi).

2.2.9. To prove the first claim, show first that (UaU ′UbU ′, V aV ′V bV ′) is equivalent
to the pair of equations {(UaU ′, V aV ′), (UbU ′, V bV ′)}. Show that if h is a solution
of this pair, then h(U) and h(V ) cannot be of different length. Conclude that h is a
solution of the original pair of equations {(U, V ), (U ′, V ′)}.

2.3.2. (ab)∗a, {w ∈ {a, b}∗ | 3 ≤ |w| ≤ 5}.

2.3.4. b∗a+b+a∗, no.

2.3.7. Show that it is a right unitary monoid.

2.3.10. The case of the submonoid {ε} is trivial. Otherwise, let k be the smallest
positive integer such that ak is in the submonoid. Show that the minimal generating
set cannot contain two words am and an where m ≡ n (mod k).

2.4.2. The equations can be very simple.

2.4.3. Find a morphism that is a solution of the first equation but not of the second,
and a morphism that is a solution of the second equation but not of the first.

2.4.4. (X,Y, Z) 7→ (ε, p, q), (X,Y, Z) 7→ (pi, pj , pk).
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3.1.2. Recall some result from Chapter 1.

3.1.8. Use the previous exercise.

3.1.9. Use the words Gn from a previous exercise.

3.2.1. Show that hn(0) ∈ (01)∗0 for all n and thus hω(0) = (01)ω.

3.2.2. In the case of the period-doubling word, show that h2n(0) = Pn0 and
h2n(1) = Pn1 for all n. In the case of the Sierpinksi word, show that hn(0) = Sn for
all n.

3.2.5. u ∈ 0∗, u ∈ 1∗.

3.2.6. First, look at the fixed point of the morphism defined by c 7→ cab, a 7→ a,
b 7→ ab.

3.3.1. Similar to the proof of Theorem 3.3.3.

3.3.2. Show that if u2 is a nonempty prefix of T , then |u| cannot be odd, and if |u|
is even, then T has a shorter nonempty square prefix. Alternatively, show that if u2

is a nonempty prefix of T , then 0u2 and 1u2 are factors of T , and one of them is an
overlap.

3.3.3. abaabbaaabbb · · · .

3.3.6. Show first that F 3
n+1 pref |Fn|−2(Fn) is a factor of the Fibonacci word for all

n ≥ 1.

3.3.7. 5324, 2388.

3.4.2. You can use the function f : {0, 1, 2}∗ → Z, f(u) = |u|0 + 2|u|1 + 3|u|2.

3.4.3. Look at the Parikh vectors of prefixes modulo n.

3.5.3. 0n and 0n10n+k where n ≥ 0 and k ≥ 1, Θ(n2).

3.5.13. 1/2.

3.5.14. 2/3, 1/3.

3.6.2. Show first that if some factor of a Sturmian word w has only one occurrence
in w, then some suffix of w has less factors than w.
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